290
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Diamond-based nanostructures with metal-organic molecules

ORCID Icon, , ORCID Icon, , , , , & ORCID Icon show all
Pages S34-S43 | Received 16 Jun 2021, Accepted 08 Oct 2021, Published online: 22 Oct 2021

References

  • Shuai, C.; Yuan, X.; Yang, W.; Peng, S.; Qian, G.; Zhao, Z. Synthesis of a Mace-like Cellulose nanocrystal@Ag Nanosystem via In-situ Growth for Antibacterial Activities of poly-L-lactide Scaffold. Carbohydr. Polym. 2021, 262, 117937. DOI: 10.1016/j.carbpol.2021.117937.
  • Yang, W.; Zhong, Y.; He, C.; Peng, S.; Yang, Y.; Qi, F.; Feng, P.; Shuai, C. Electrostatic Self-assembly of pFe3O4 Nanoparticles on Graphene Oxide: A Co-dispersed Nanosystem Reinforces PLLA Scaffolds. J. Adv. Res. 2020, 24, 191–203. DOI: 10.1016/j.jare.2020.04.009.
  • Soares, D. C. F.; Domingues, S. C.; Viana, D. B.; Tebaldi, M. L. Polymer-hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131(1–13), 110695. DOI: 10.1016/j.biopha.2020.110695.
  • Seaberg, J.; Montazerian, H.; Hossen, N.; Bhattacharya, R.; Khademhosseini, A.; Mukherjee, P. Hybrid Nanosystems for Biomedical Applications. ACS Nano. 2021, 15(2), 2099–2142. DOI: 10.1021/acsnano.0c09382.
  • Gao, G.; Guo, Q.; Zhi, J. Nanodiamond-Based Theranostic Platform for Drug Delivery and Bioimaging. Small. 2019, 15(48), 1902238. Special Issue: Nanocarbon Chemistry. DOI: 10.1002/smll.201902238.
  • Lin, Y.; Sun, X.; Su, D. S.; Centi, G.; Perathoner, S. Catalysis by Hybrid Sp2/sp3 Nanodiamonds and Their Role in the Design of Advanced Nanocarbon Materials. Chem. Soc. Rev. 2018, 47(22), 8438–8473. DOI: 10.1039/C8CS00684A.
  • Lebedev, V. T.; Yu.V., K.; Kuklin, A. I.; A. YA., V. Neutron Study of Multilevel Structures of Diamond Gels. Condens. Matter. 2016, 1(10), 1–9. DOI: 10.3390/condmat1010010.
  • Sigl, C.; Willner, E. M.; Engelen, W.; Kretzmann, J. A.; Sachenbacher, K.; Liedl, A.; Kolbe, F.; Wilsch, F.; Aghvami, S. A.; Protzer, U.; et al. Programmable Icosahedral Shell System for Virus Trapping. Nat. Mater. 2021, 20(9), 1281–1289. DOI: 10.1038/s41563-021-01020-4.
  • Vul, A. Y.; Eidelman, E. D.; Aleksenskiy, A. E.; Shvidchenko, A. V.; Dideikin, A. T.; Yuferev, V. S.; Lebedev, V. T.; Kulvelis, Y. V.; Avdeev, M. V. Transition Sol-gel in Nanodiamond Hydrosols. Carbon. 2017, 114, 242–249. DOI: 10.1016/j.carbon.2016.12.007.
  • Vul, A. Y.; Dideikin, A. T.; Aleksenskiy, A. E.; Baidakova, M. V. Detonation Nanodiamonds. Synthesis, Properties and Applications. In Williams, O. A., Ed.; Nanodiamond; RSC Nanoscience and Nanotechnology: Cardiff, 2014.
  • Piotrovskiy, L. B.; Nikolaev, D. N.; Shenderova, O. A. Biomedical Applications of Nanodiamonds: Reality and Perspectives. In Chapter 10, Detonation Nanodiamonds: Science and Applications; Vul, A. Y., Shenderova, O. A., Eds.; Singapore: Pan Stanford Publishing Pte. Ltd., 2014; pp 267–320.
  • Doerr, A. Diamonds for MRI. Nat. Methods. 2015, 12(3), 176. DOI: 10.1038/nmeth.3310.
  • Sun, W.; Zhou, Z.; Pratx, G.; Chen, X.; Chen, H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics. 2020, 10(3), 1296–1318. DOI: 10.7150/thno.41578.
  • Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent Advances in Innovative Strategies for Enhanced Cancer Photodynamic Therapy. Theranostics. 2021, 11(7), 3278–3300. DOI: 10.7150/thno.54227.
  • Anani, T.; Rahmati, S.; Sultana, N.; David, A. E. MRI-traceable Theranostic Nanoparticles for Targeted Cancer Treatment. Theranostics. 2021, 11(2), 579–601. DOI: 10.7150/thno.4881.
  • Hambright, P. Chemistry of Water-Soluble Porphyrins. In The Porphyrin Handbook, V.3; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: Amsterdam, 2000; pp 132–208.
  • Buchler, J. W.; Ng, D. K. P. Metal Tetrapyrrole Double- and Triple-Deckers with Special Emphasis on Porphyrin Systems. In The Porphyrin Handbook. V. 3; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Amsterdam: Academic Press, 2000; pp 246–294.
  • Alexenskii, A. E. Technology of Preparation of Detonation Nanodiamond. In Detonation Nanodiamonds: Science and Applications; Vul, A. Y., Shenderova, O. A., Eds.; Singapore: Pan Stanford Publishing Pte. Ltd., Chapter 2. 2014; pp 37–72.
  • Tomchuk, O. V.; Volkov, D. S.; Bulavin, L. A.; Rogachev, A. V.; Proskurnin, M. A.; Korobov, M. V.; Avdeev, M. V. Structural Characteristics of Aqueous Dispersions of Detonation Nanodiamond and Their Aggregate Fractions as Revealed by Small-Angle Neutron Scattering. J. Phys. Chem. C. 2015, 119(1), 794–802. DOI: 10.1021/jp510151b.
  • Dyrda, G.; Zakrzyk, M.; Broda, M. A.; Pedzinski, T.; Mele, G.; Słota, R. Hydrogen Bond-Mediated Conjugates Involving Lanthanide Diphthalocyanines and Trifluoroacetic Acid (Lnpc2@tfa): Structure, Photoactivity, and Stability. Molecules. 2020, 25(16), 3638. DOI: 10.3390/molecules25163638.
  • Moskalev, P. N.; Mishin, V. Y.; Rubtsov, E. M.; Kirin, I. S. Synthesis and Thermal Stability of Diphthalocyanine Complexes with Lanthanides, Hafnium, Thorium, Uranium. Zh. Neorg. Khim. 1976, 21(8), 2259–2262. Russ.
  • Moskalev, P. N. Sandwich-like Coordination Compounds of Metals with Phthalocyanine and Porphyrines. Koord. Khim. 10: 147–158. 1990. Russ.
  • Ziminov, A. V.; Yuppe, T. A.; Ramsh, S. M.; Mezdrogina, M. M. Spectral Characteristics of Europium Phthalocyaninates with Different Axial Ligands. Phys. Solid State. 2010, 52(9), 1915–1918. DOI: 10.1134/S1063783410090210.
  • Bolshakova, O.; Borisenkova, A.; Suyasova, M.; Sedov, V.; Slobodina, A.; Timoshenko, S.; Varfolomeeva, E.; Golomidov, I.; Lebedev, V.; Aksenov, V.; et al. In Vitro and in Vivo Study of the Toxicity of Fullerenols С60, С70 and С120О Obtained by an Original Two Step Method. Mater. Sci. Eng. C. 2019, 104, 109945–109955. DOI: 10.1016/j.msec.2019.109945.
  • Feigin, L. A.; Svergun, D. I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987.
  • Manalastas-Cantos, K.; Konarev, P. V.; Hajizadeh, N. R.; Kikhney, A. G.; Petoukhov, M. V.; Molodenskiy, D. S.; Panjkovich, A.; Mertens, H. D. T.; Gruzinov, A.; Borges, C.; et al. ATSAS 3.0: Expanded Functionality and New Tools for Small-angle Scattering Data Analysis. J. Appl. Cryst. 2021, 54(1), 343–355. DOI: 10.1107/s1600576720013412.
  • Chawla, H.; Chandra, A.; Ingole, P. P.; Garg, S. Recent Advancements in Enhancement of Photocatalytic Activity Using Bismuth-based Metal Oxides Bi2MO6 (M=W, Mo, Cr) for Environmental Remediation and Clean Energy Production. J. Ind. Eng. Chem. 2021, 95, 1–15. DOI: 10.1016/j.jiec.2020.12.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.