188
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Isoscattering point in SANS contrast variation study of aqueous magnetic fluids

ORCID Icon, ORCID Icon & ORCID Icon
Pages S44-S49 | Received 10 Sep 2021, Accepted 15 Oct 2021, Published online: 23 Oct 2021

References

  • Khalkhali, M.; Sadighian, S.; Rostamizadeh, K.; Khoeini, F.; Naghibi, M.; Bayat, N.; Habibizadeh, M.; Hamidi, M. Synthesis and Characterization of Dextran Coated Magnetite Manoparticles for Diagnostics and Therapy. Bioimpacts. 2015, 5(3), 141–150. DOI: 10.15171/bi.2015.19.
  • Van Der Zee, J.; Vujaskovic, Z.; Kondo, M.; Sugahara, T. The Kadota Fund International Forum 2004 – Clinical Group Consensus. Int. J. Hyperthermia. 2008, 24(2), 111–122. DOI: 10.1080/02656730801895058.
  • Yang, C.; Bian, X.; Guo, T.; Zhang, K.; Liu, Y. Investigation of Fe3O4 Aqueous Ferrofluids before and after Freezing. Soft Mater. 2014, 12(3), 346–351. DOI: 10.1080/1539445X.2014.896823.
  • Karim, M. R.; Yeum, J. H. Poly(vinyl alcohol)-Fe3O4 Nanocomposites Prepared by the Electrospinning Technique. Soft Mater. 2010, 8(3), 197–206. DOI: 10.1080/1539445X.2010.495611.
  • Hui, L. X.; Tian, G. T.; Guang, Y.; Yan, Y. X.; Chan, S. L.; Wen, L. Q.; Ye, Q. Effect of Nanomagnetic Particle on Mechanics Performance of Magneto-Rheological Fluid. Soft Mater. 2019, 17(2), 119–125. DOI: 10.1080/1539445X.2018.1552157.
  • Iqbal, A.; Iqbal, K.; Li, B.; Gong, D.; Qin, W. Recent Advances in Iron Nanoparticles: Preparation, Properties, Biological and Environmental Application. J. Nanosci. Nanotechnol. 2017, 17(7), 4386–4409. DOI: 10.1166/jnn.2017.14196.
  • Jiang, C.; Ng, S. M.; Leung, C. W.; Pong, P. W. T. Magnetically Assembled Iron Oxide Nanoparticle Coatings and Their Integration with Pseudo-Spin-Valve Thin Films. J. Mater. Chem. C. 2017, 5(2), 252–263. DOI: 10.1039/C6TC03918A.
  • Bica, D.; Vékás, L.; Avdeev, M. V.; Marinică, O.; Socoliuc, V.; Bălăsoiu, M.; Garamus, V. M. Sterically Stabilized Water Based Magnetic Fluids: Synthesis, Structure and Properties. J. Magn. Magn. Mater. 2007, 311(1), 17–21. DOI: 10.1016/j.jmmm.2006.11.158.
  • Avdeev, M. V.; Aksenov, V. L. Small-Angle Neutron Scattering in Structure Research of Magnetic Fluids. Phys. Uspekhi. 2010, 53(10), 971–993. DOI: 10.3367/UFNr.0180.201010a.1009.
  • Lysenko, S. N.; Lebedev, A. V.; Astaf’eva, S. A.; Yakusheva, D. E.; Balasoiu, M.; Kuklin, A. I.; Kovalev, Y. S.; Turchenko, V. A. Preparation and Magneto-Optical Behavior of Ferrofluids with Anisometric Particles. Phys. Scr. 2020, 95(4), 044007. DOI: 10.1088/1402-4896/ab6797.
  • Avdeev, M. V.; Feoktystov, A. V.; Kopcansky, P.; Lancz, G.; Garamus, V. M.; Willumeit, R.; Timko, M.; Koneracka, M.; Zavisova, V.; Tomasovicova, N.;, et al. Structure of Water-Based Ferrofluids with Sodium Oleate and Polyethylene Glycol Stabilization by Small-Angle Neutron Scattering: Contrast-Variation Experiments. J. Appl. Crystalogr. 2010, 43(5), 959–969. DOI: 10.1107/S0021889810025379.
  • Nagornyi, A. V.; Shlapa, Y.; Avdeev, M. V.; Solopan, S. O.; Belous, A. G.; Shulenina, A. V.; Ivankov, O. I.; Bulavin, L. A. Structural Characterization of Aqueous Magnetic Fluids with Nanomagnetite of Different Origin Stabilized by Sodium Oleate. J. Mol. Liq. 2020, 312, 113430. DOI: 10.1016/j.molliq.2020.113430.
  • Köhler, T.; Feoktystov, A.; Petracic, O.; Kentzinger, E.; Bhatnagar-Schöffmann, T.; Feygenson, M.; Nandakumaran, N.; Landers, J.; Wende, H.; Cervellino, A.;, et al. Mechanism of Magnetization Reduction in Iron Oxide Nanoparticles. Nanoscale. 2021, 13(14), 6965–6976. DOI: 10.1039/D0NR08615K.
  • Tomchuk, O. V.; Avdeev, M. V.; Aksenov, V. L.; Shulenina, A. V.; Ivankov, O. I.; Ryukhtin, V.; Vékás, L.; Bulavin, L. A. Temperature-Dependent Fractal Structure of Particle Clusters in Aqueous Ferrofluids by Small-Angle Scattering. Colloids Surf. A. 2021, 613, 126090. DOI: 10.1016/j.colsurfa.2020.126090.
  • Avdeev, M. V.;. Contrast Variation in Small-Angle Scattering Experiments on Polydisperse and Superparamagnetic Systems: Basic Functions Approach. J. Appl. Crystallogr. 2007, 40(1), 56–70. DOI: 10.1107/S0021889806049491.
  • Kawaguchi, T.; Hamanaka, T.; Mitsui, T. X-Ray Structural Studies of Some Nonionic Detergent Micelles. J. Colloid Interface Sci. 1983, 96(2), 437–453. DOI: 10.1016/0021-9797(83)90046-2.
  • Kawaguchi, T.;. Application of Isoscattering Points to the Analysis of Globular Solute Structures. Crystallogr. Rev. 2004, 10(3), 233–246. DOI: 10.1080/0889311042000261816.
  • Kawaguchi, T.; Hamanaka, T. The Isoscattering Point in X-ray Scattering Curves of Globular Solute Particles Measured by the Contrast-Variation Method. J. Appl. Crystallogr. 1992, 25(6), 778–784. DOI: 10.1107/s0021889892006368.
  • Garcia-Diez, R.; Gollwitzer, C.; Krumrey, M.; Varga, Z. Size Determination of a Liposomal Drug by Small-Angle X‑ray Scattering Using Continuous Contrast Variation. Langmuir. 2016, 32(3), 772–778. DOI: 10.1021/acs.langmuir.5b02261.
  • Garcia-Diez, R.; Gollwitzer, C.; Krumrey, M. Nanoparticle Characterization by Continuous Contrast Variation in SAXS with a Solvent Density Gradient. J. Appl. Cryst. 2015, 48(1), 20–28. DOI: 10.1107/S1600576714024455.
  • Ballauff, M.;. Analysis of Latex Particles by Small-Angle X-Ray Scattering: The Isoscattering Point Revisited. Progr. Colloid Polym. Sci. 1998, 110, 76–79. DOI: 10.1007/BFB0118053.
  • Bolze, J.; Ballauff, M.; Kijlstra, J.; Rudhardt, D. Application of Small-Angle X-Ray Scattering as a Tool for the Structural Analysis of Industrial Polymer Dispersions. Macromol. Mater. Eng. 2003, 288(6), 495–502. DOI: 10.1002/mame.200390046.
  • Feigin, L. A.; Svergun, D. I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Plenum Press: New York, 1987; pp 335.
  • Bonini, M.; Fratini, E.; Baglioni, P. SAXS Study of Chain-Like Structures Formed by Magnetic Nanoparticles. Mater. Sci. Eng. C. 2007, 27(5–8), 1377–1381. DOI: 10.1016/j.msec.2006.09.002.
  • Vasilescu, C.; Latikka, M.; Knudsen, K. D.; Haramus, V. M.; Socoliuc, V.; Turcu, R.; Tombácz, E.; Susan-Resiga, D.; Ras, R. H. A.; Vékás, L. High Concentration Aqueous Magnetic Fluids: Structure, Colloidal Stability, Magnetic and Flow Properties. Soft Matter. 2018, 14(32), 6648–6666. DOI: 10.1039/c7sm02417g.
  • Veligzhanin, A. A.; Frey, D. I.; Shulenina, A. V.; Gruzinov, A. Y.; Zubavichus, Y. V.; Avdeev, M. V. Characterization of Aggregate State of Polydisperse Ferrofluids: Some Aspects of Anisotropy Analysis of 2D SAXS in Magnetic Field. J. Magn. Magn. Mater. 2018, 459, 285–289. DOI: 10.1016/j.jmmm.2017.10.052.
  • Martínez-Pedrero, F.; Tirado-Miranda, M.; Schmitt, A.; Vereda, F.; Callejas-Fern´andez, J. Structure and Stability of Aggregates Formed by Electrical Double-Layered Magnetic Particles. Colloids Surf. A. 2007, 306(1–3), 158–165. DOI: 10.1016/j.colsurfa.2007.03.029.
  • Paula, F. L. O.;. SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters. Condens. Matter. 2019, 4(2), 55. DOI: 10.3390/condmat4020055.
  • Nagornyi, A. V.; Petrenko, V. I.; Avdeev, M. V.; Yelenich, O. V.; Solopan, S. O.; Belous, A. G.; Gruzinov, A. Y.; Ivankov, O. I.; Bulavin, L. A. Structural Aspects of Magnetic Fluid Stabilization in Aqueous Agarose Solutions. J. Magn. Magn. Mater. 2017, 431, 16–19. DOI: 10.1016/j.jmmm.2016.10.018.
  • Beaucage, G.;. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Cryst. 1995, 28(6), 717–728. DOI: 10.1107/S0021889895005292.
  • Hammouda, B.;. A New Guinier–Porod Model. J. Appl. Cryst. 2010, 43(4), 716–719. DOI: 10.1107/S0021889810015773.
  • Bica, D.;. Preparation of Magnetic Fluids for Various Applications. Rom. Rep. Phys. 1995, 47, 265–272.
  • Kuklin, A. I.; Ivankov, O. I.; Rogachev, A. V.; Soloviov, D. V.; Islamov, A. K.; Skoi, V. V.; Kovalev, Y. S.; Vlasov, A. V.; Ryzykau, Y. L.; Soloviev, A. G.;, et al. Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects. Crystallogr. Rep. 2021, 66(2), 231–241. DOI: 10.1134/S1063774521020085.
  • Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Y. S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I. Neutronographic Investigations of Supramolecular Structures on Upgraded Small-Angle Spectrometer YuMO. J. Phys: Conf. Ser. 2017, 848, 012010. DOI: 10.1088/1742-6596/848/1/012010.
  • Shvetsov, V.;. Pulsed Fast Reactor IBR-2 after Modernization. J. Surf. Investig. 2020, 14(S1), S213–S217. DOI: 10.1134/S1027451020070435.
  • Soloviev, A. G.; Solovjeva, T. M.; Ivankov, O. I.; Soloviov, D. V.; Rogachev, A. V.; Kuklin, A. I. SAS Program for Two-Detector System: Seamless Curve from Both Detectors. J. Phys. 2017, 848, 012020. DOI: 10.1088/1742-6596/848/1/012020.
  • SasView, http://www.sasview.org, DOI: 10.5281/zenodo.2652478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.