305
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simulation of magneto-mechanical response of ferrogel samples with various polymer structure

ORCID Icon, ORCID Icon &
Pages S50-S58 | Received 12 Jul 2021, Accepted 21 Oct 2021, Published online: 02 Nov 2021

References

  • Guisasola, E.; Vallet-Regí, M.; Baeza, A. Magnetically Responsive Polymers for Drug Delivery Applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Makhlouf, A. S. H., Abu-Thabit, N. Y., Ed., Woodhead Publishing: Duxford: UK, 2018; Vol. 1, pp 143–168.
  • Zhao, X.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active Scaffolds for On-demand Drug and Cell Delivery. Proc. Natl. Acad. Sci. USA. 2011, 108(1), 67–72. DOI: 10.1073/pnas.1007862108.
  • Babincova, M.; Leszczynska, D.; Sourivong, P.; Čičmanec, P.; Babinec, P. Superparamagnetic Gel as a Novel Material for Electro Magnetically Induced Hyperthermia. J. Magn. Magn. Mater. 2001, 225(1), 109–112. DOI: 10.1016/S0304-8853(00)01237-3.
  • Lin, C. C.; Metters, A. T. Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling. Adv. Drug Delivery Rev. 2006, 58(12–13), 1379–1408. DOI: 10.1016/j.addr.2006.09.004.
  • Shahinpoor, M.; Kim, K. J.; Mojarrad, M. Artificial Muscles: Applications of Advanced Polymeric Nanocomposites; CRC Press; New York: London, 2007.
  • Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Magnetic, X. F. Hydrogels and Their Potential Biomedical Applications. Adv. Funct. Mater. 2013, 23(6), 660–672. DOI: 10.1002/adfm.201201708.
  • Blyakhman, F. A.; Safronov, A. P.; Zubarev, A. Y.; Shklyar, T. F.; Makeyev, O. G.; Makarova, E. B.; Melekhin, V. M.; Larrañaga, A.; Kurlyandskaya, G. V. Polyacrylamide Ferrogels with Embedded Maghemite Nanoparticles for Biomedical Engineering. Res. Phys. 2017, 7, 3624–3633. DOI: 10.1016/j.rinp.2017.09.042.
  • Stolbov, O. V.; Raikher, Y. L.; Balasoiu, M. Modelling of Magnetodipolar Striction in Soft Magnetic Elastomers. Soft Matter. 2011, 7, 8484–8487. DOI: 10.1039/C1sm05714f.
  • Huang, S.; Pessot, G.; Cremer, P.; Weeber, R.; Holm, C.; Nowak, J.; Odenbach, S.; Menzel, A. M.; Auernhammer, G. K. Buckling of Paramagnetic Chains in Soft Gels. Soft Matter. 2016, 12, 228–237. DOI: 10.1039/C5SM01814E.
  • Wood, D. S.; Camp, P. J. Modeling the Properties of Ferrogels in Uniform Magnetic Fields. Phys. Rev. E. 2011, 83, 011402. DOI: 10.1103/PhysRevE.83.011402.
  • Pessot, G.; Cremer, P.; Borin, D. Y.; Odenbach, S.; Löwen, H.; Menzel, A. M. Structural Control of Elastic Moduli in Ferrogels and the Importance of Non-affine Deformations. J. Chem. Phys. 2014, 141(12), 124904. DOI: 10.1063/1.4896147.
  • Sánchez, P. A.; Gundermann, T.; Dobroserdova, A.; Kantorovich, S. S.; Odenbach, S. Importance of Matrix Inelastic Deformations in the Initial Response of Magnetic Elastomers. Soft Matter. 2018, 14, 2170–2183. DOI: 10.1039/C7SM02366A.
  • Weeber, R.; Holm, C. Interplay between Particle Microstructure, Network Topology and Sample Shape in Magnetic Gels – A Molecular Dynamics Simulation Study. arXiv. 2017, 1704.06578.
  • Goh, S.; Wittmann, R.; Menzel, A. M.; Löwen, H. Classical Density Functional Theory for a Two-dimensional Isotropic Ferrogel Model with Labeled Particles. Phys. Rev. E. 2019, 100, 012605. DOI: 10.1103/PhysRevE.100.012605.
  • Ivaneyko, D.; Toshchevikov, V. P.; Saphiannikova, M. Dynamic Moduli of Magneto-sensitive Elastomers: A Coarse-grained Network Model. Soft Matter. 2015, 11, 7627–7638. DOI: 10.1039/C5SM01761K.
  • Pessot, G.; Löwen, H.; Menzel, A. M. Dynamic Elastic Moduli in Magnetic Gels: Normal Modes and Linear Response. J. Chem. Phys. 2016, 145(10), 104904. DOI: 10.1063/1.4962365.
  • Goh, S.; Menzel, A. M.; Löwen, H. Dynamics in a One-dimensional Ferrogel Model: Relaxation, Pairing, Shock-wave Propagation. Phys. Chem. Chem. Phys. 2018, 20, 15037–15051. DOI: 10.1039/C8CP01395K.
  • Dudek, M. R.; Grabiec, B.; Wojciechowski, K. W. Molecular Dynamics Simulations of Auxetic Ferrogel. Rev. Adv. Mater. Sci. 2007, 14(2), 167–173.
  • Weeber, R.; Kantorovich, S. S.; Holm, C. Deformation Mechanisms in 2D Magnetic Gels Studied by Computer Simulations. Soft Matter. 2012, 8, 9923–9932. DOI: 10.1039/C2SM26097B.
  • Minina, E.; Sánchez, P. A.; Likos, C. N.; Kantorovich, S. S. Studying Synthesis Confinement Effects on the Internal Structure of Nanogels in Computer Simulations. J. Mol. Liq. 2019, 289, 111066. DOI: 10.1016/j.molliq.2019.111066.
  • Sánchez, P. A.; Stolbov, O. V.; Kantorovich, S. S.; Raikher, Y. L. Modeling the Magnetostriction Effect in Elastomers with Magnetically Soft and Hard Particles. Soft Matter. 2019, 15, 7145–7158. DOI: 10.1039/C9SM00827F.
  • Zrínyi, M.; Barsi, L.; Büki, A. Deformation of Ferrogels Induced by Nonuniform Magnetic Fields. J. Chem. Phys. 1996, 104(21), 8750–8756. DOI: 10.1063/1.471564.
  • Blyakhman, F. A.; Makarova, E. B.; Fadeyev, F. A.; Lugovets, D. V.; Safronov, A. P.; Shabadrov, P. A.; Shklyar, T. F.; Melnikov, G. Y.; Orue, I.; Kurlyandskaya, G. V. The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties. Nanomaterials. 2019, 9(2), 232. DOI: 10.3390/nano9020232.
  • Martín-Molina, A.; Quesada-Pérez, M. A Review of Coarse-grained Simulations of Nanogel and Microgel Particles. J. Mol. Liq. 2019, 280, 374–381. DOI: 10.1016/j.molliq.2019.02.030.
  • Weeber, R.; Hermes, M.; Schmidt, A. M.; Holm, C. Polymer Architecture of Magnetic Gels: A Review. J. Phys. Cond. Matter. 2018, 30(6), 063002. DOI: 10.1088/1361-648X/aaa344.
  • Galicia, J. A.; Cousin, F.; Dubois, E.; Sandre, O.; Cabuil, V.; Perzynski, R. Static and Dynamic Structural Probing of Swollen Polyacrylamide Ferrogels. Soft Matter. 2009, 5, 2614–2624. DOI: 10.1039/B819189A.
  • Campbell, S. B.; Patenaude, M.; Hoare, T. Injectable Superparamagnets: Highly Elastic and Degradable poly(N-isopropylacrylamide)-superparamagnetic Iron Oxide Nanoparticle (SPION) Composite Hydrogels. Biomacromolecules. 2014, 14(3), 644–653. DOI: 10.1021/bm301703x.
  • Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. DOI: 10.1063/1.1674820.
  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81(8), 3684. DOI: 10.1063/1.448118.
  • Ryzhkov, A. V.; Melenev, P. V.; Balasoiu, M.; Raikher, Y. L. Structure Organization and Magnetic Properties of Microscale Ferrogels: The Effect of Particle Magnetic Anisotropy. J. Chem. Phys. 2016, 145(7), 074905. DOI: 10.1063/1.4961299.
  • Arnold, A.; Lenz, O.; Kesselheim, S.; Weeber, R.; Fahrenberger, F.; Rohm, D.; Kosovan, P.; Holm, C. ESPResSo 3.1 — Molecular Dynamics Software for Coarse-grained Models. In Meshfree Methods for Partial Differential Equations VI. Volume 89 of Lecture Notes in Computational Science and Engineering; Griebel, M., Schweitzer, M. A., Ed., Springer: Berlin, Heidelberg: Germany, 2013; pp. 1–23. DOI:10.1007/978-3-642-32979-1_1.
  • Ivanov, A. O.; Kuznetsova, O. B. Magnetic Properties of Dense Ferrofluids: An Influence of Interparticle Correlations. Phys. Rev. E. 2001, 64(4), 041405. DOI: 10.1103/PhysRevE.64.041405.
  • Liu, T. Y.; Hu, S. H.; Liu, D. M.; Chen, S. Y.; Chen, I. W. Biomedical Nanoparticle Carriers with Combined Thermal and Magnetic Responses. Nano Today. 2009, 4(1), 52–65. DOI: 10.1016/j.nantod.2008.10.011.
  • Liu, T. Y.; Hu, S. H.; Liu, T. Y.; Liu, D. M.; Chen, S. Y. Magnetic-sensitive Behavior of Intelligent Ferrogels for Controlled Release of Drug. Langmuir. 2006, 22(14), 5974–5978. DOI: 10.1021/la060371e.
  • Qin, J.; Asempah, I.; Laurent, S.; Fornara, A.; Muller, R. N.; Muhammed, M. Injectable Superparamagnetic Ferrogels for Controlled Release of Hydrophobic Drugs. Adv. Mater. 2009, 21(13), 1354–1357. DOI: 10.1002/adma.200800764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.