265
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of magnetic iron oxide – silica nanocomposites used for adsorptive recovery of palladium (II)

, , , , , , & show all
Pages S68-S75 | Received 08 Sep 2021, Accepted 25 Oct 2021, Published online: 19 Nov 2021

References

  • Hasany, S. F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanosci. Nanotechnol. 2012, 2, 148–158. DOI: 10.5923/j.nn.20120206.01.
  • Magro, M.; Vianello, F. Bare Iron Oxide Nanoparticles: Surface Tenability for Biomedical, Sensing and Environmental Applications. Nanomaterials 2019, 9, 1608–1627. DOI: 10.3390/nano9111608.
  • Yu, S.; Ng, H.; Wang, F.; Xiao, Z.; Li, C.; Kong, L. B.; Que, W., and Zhou, K. Synthesis and Application of Iron-based Nanomaterials as Anodes of Lithium-ion Batteries and Supercapacitors. J. Mater. Chem. A 2018, 6, 9332–9367. DOI: 10.1039/C8TA01683F.
  • Sangaiya, P.; Jayaprakash, R. A Review on Iron Oxide Nanoparticles and Their Biomedical Applications. J. Supercond. Nov. Magn. 2018, 31, 3397–3413. DOI: 10.1007/s10948-018-4841-2.
  • Khawja Ansari, S. A. M.; Ficiara, E.; Ruffinatti, F. A.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C., and D’Agata, F., Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials 2019, 12, 465. DOI: 10.3390/ma12030465.
  • Almásy, L.; Creanga, D.; Nadejde, C.; Rosta, L.; Pomjakushina, E., and Ursache-Oprisan, M.,Wet Milling versus Co-precipitation in Magnetite Ferrofluid Preparation. J. Serbian Chem. Soc. 2015, 80, 367–376. DOI: 10.2298/JSC140313053A.
  • Aliramaji, S.; Zamanian, A.; Sohrabijam, Z. Characterization and Synthesis of Magnetite Nanoparticles by Innovative Sonochemical Method. Procedia Mater. Sci. 2015, 11, 256–269. DOI: 10.1016/j.mspro.2015.11.022.
  • Hui, C.; Shen, C., and Tian, J.,Bao, L.; Ding, H.; Li, C.; Shi, X. ; Gao, H.-J. Core-shell Fe3O4@SiO2 Nanoparticles Synthesized with Well Dispersed Hydrophilic Fe3O4 Seeds. Nanoscale 2011, 3, 701–705. DOI: 10.1039/c0nr00497a.
  • Gonzales-Fernandez, M. A.; Torres, T., and Andres-Verges, M.,Costo, R.; de la Presa, P.; Serna, C. J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G. F. Magnetic Nanoparticles for Power Absorption: Optimizing Size, Shape and Magnetic Properties. J. Solid State Chem. 2009, 182, 2779–2784. DOI: 10.1016/j.jssc.2009.07.047.
  • Kornak, R.; Niznansky, D.; Haimann, K.; Tylus, W.; Maruszewski, K. Synthesis of Magnetic Nanoparticles via the Sol-gel Technique. Mater. Sci. Poland. 2005, 23, 87–92.
  • Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodispersed Silica Spheres in the Micron Size Range. J Colloid. Interf. Sci. 1968, 26, 62–69. DOI: 10.1016/0021-9797(68)90272-5.
  • Chen, F.; Bu, W.; Chen, Y.; Fan, Y.; He, Q.; Zhu, M.; Liu, X.; Zhou, L.; Zhang, S., and Peng, W., A Sub-50-nm Monosized Superparamagnetic Fe3O4@SiO2 T2-Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core–Shell Nanostructures. Chem. Asian J. 2009, 4, 1809–1816. DOI: 10.1002/asia.200900276.
  • Lu, C. Y.; Puig, T.; Obradors, X.; Ricart, S., and Ros, J., Ultra-fast Microwave-assisted Reverse Microemulsion Synthesis of Fe3O4@SiO2 Core–shell Nanoparticles as a Highly Recyclable Silver Nanoparticle Catalytic Platform in the Reduction of 4-nitroaniline. RSC Adv. 2016, 6, 88762–88769. DOI: 10.1039/C6RA19435D.
  • Gahrouei, Z. E.; Imani, M.; Soltani, M., and Shafyei, A. Synthesis of Iron Oxide Nanoparticles for Hyperthermia Application: Effect of Ultrasonic Irradiation Assisted Co-precipitation Route. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11 2 , 025001. DOI: 10.1088/2043-6254/ab878f.
  • Koizumi, H.; Uddin, M. A.; Kato, Y. Effect of Ultrasonic Irradiation on γ-Fe2O3 Formation by Co-precipitation Method with Fe3+ Salt and Alkaline Solution. Inorg. Chem. Comm. 2021, 124, 108400. DOI: 10.1016/j.inoche.2020.108400.
  • Putz, A.-M.; Len, A.; Ianăşi, C.; Savii, C.; Almásy, L. Ultrasonic Preparation of Mesoporous Silica Using Pyridinium Ionic Liquid. Korean J. Chem. Eng. 2016, 33, 749–754. DOI: 10.1007/s11814-016-0021-x.
  • Majeed, J.; Ramkumar, J.; Chandramouleeswaran, S.; Tyagi, A. K. Fe3O4@SiO2 Core-shell Nanoparticles: Synthesis, Characterization and Application in Environmental Remediation. AIP Conf. Proc. 2014, 1591, 605. DOI: 10.1063/1.4872690.
  • Nicola, R.; Costişor, O.; Ciopec, M.; Negrea, A.; Lazău, R.; Ianăşi, C.; Picioruş, E.-M.; Len, A.; Almásy, L.; Szerb, E. I., and Putz, A.-M., Silica-Coated Magnetic Nanocomposites for Pb2+ Removal from Aqueous Solution. Appl. Sci. 2020, 10, 2726. DOI: 10.3390/app10082726.
  • Yamada, M.; Rajiv Gandhi, M.; Shibayama, A. Rapid and Selective Recovery of Palladium from Platinum Group Metals and Base Metals Using a Thioamide-modified Calix[4]arene Extractant in Environmentally Friendly Hydrocarbon Fluids. Sci. Rep. 2018, 8, 16909. DOI: 10.1038/s41598-018-35026-x.
  • Iavicoli, I.; Fontana, L., and Bergamaschi, A. Palladium: Exposure, Uses, and Human Health Effects. In J. O. Nriagu Ed., Encyclopedia of Environmental Health; 2011; Amserdam: Elsevier; pp 307–314. doi:10.1016/B978-0-444-52272-6.00575-4
  • Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.; Ekberg, C. Recovery of Precious Metals from Electronic Waste and Spent Catalysts: A Review. Resour. Conserv. Recycl. 2019, 141, 284–298. DOI: 10.1016/j.resconrec.2018.10.041.
  • Panda, R.; Jha, M. K., and Pathak, D. D. Commercial Processes for the Extraction of Platinum Group Metals (Pgms). In: Kim H. et al. (eds)The Minerals, Metals & Materials Series; 2018; Cham: Rare Metal Technology, Springer; pp 119–130. doi:10.1007/978-3-319-72350-1_11
  • Renner, H.;. Ulmann’s Encyclopedia of Industrial Chemistry, 5th.; Elvers, B., Hawkins, S., and Schulz, G., Eds.; 1992, A21. Weinheim: Wiley-VCH Publishers. 114.
  • Bernardis, F. L.; Grant, R. A.; Sherrington, D. C. A Review of Methods of Separation of the Platinum-group Metals through Their Chloro-complexes. React. Funct. Polym. 2005, 65(3), 205–217. DOI: 10.1016/j.reactfunctpolym.2005.05.011.
  • Lloyd, P. J. Principles of Industrial Solvent Extraction. In Solvent Extraction Principles and Practices; Rydberg, J., Cox, M., Musikas, C., Choppin, G. R., Eds.; Marcel Dekker: New York, 2004; pp 339. DOI: 10.1201/9780203021460.
  • Lee, J.; Kurniawan; Hong, H.-J.; Chung, K. W.; Kim, S. Separation of Platinum, Palladium and Rhodium from Aqueous Solutions Using Ion Exchange Resin: A Review. Sep. Purif. Technol. 2020, 246, 116896. DOI: 10.1016/j.seppur.2020.116896.
  • Grad, O. A.; Ciopec, M.; Negrea, A.; Duteanu, N.; Negrea, P., and Vodă, R., Evaluation of Performance of Functionalized Amberlite XAD7 with Dibenzo-18-Crown Ether-6 for Palladium Recovery. Materials 2021, 14, 1003. DOI: 10.3390/ma14041003.
  • Grad, O.; Ciopec, M.; Negrea, A.; Duțeanu, N.; Vlase, G.; Negrea, P.; Dumitrescu, C.; Vlase, T., and Vodă, R., Precious Metals Recovery from Aqueous Solutions Using a New Adsorbent Material. Sci. Rep. 2021, 11, 2016. DOI: 10.1038/s41598-021-81680-z.
  • Singh, N. B.; Nagpal, G.; Agrawal, S.; Rachna. Water Purification by Using Adsorbents: A Review. Environ. Technol. Innovation. 2018, 11, 187–240. DOI: 10.1016/j.eti.2018.05.006.
  • Ahmad, A.; Siddique, J.; Laskar, M.; Kumar, R.; Mohd-Setapar, S. H.; Khatoon, A., and Shiekh, R. A. New Generation Amberlite XAD Resin for the Removal of Metal Ions: A Review. J. Environ. Sci. 2015, 31, 104–123. doi:10.1016/j.jes.2014.12.008.
  • Bhatnagar, A., and Minocha, A. K. Conventional and Non-conventional Adsorbents for Removal of Pollutants from Water – A Review. Indian J. Chem. Technol. 13 2006, 3, 203–217. http://nopr.niscair.res.in/handle/123456789/7020
  • Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv. Sci. 2021, 8, 202004951. DOI: 10.1002/advs.202004951.
  • Sun, Z.; Srinivasakannan, C.; Liang, J.; Duan, X. Preparation of Hierarchical Magnesium Silicate with Excellent Adsorption Capacity. Ceram. Int. 2018, 45, 4590–4595. DOI: 10.1016/j.ceramint.2018.11.146.
  • Omidvar-Hosseini, F.; Moeinpour, F. Removal of Pb(II) from Aqueous Solutions Using Acacia Nilotica Seed Shell Ash Supported Ni0.5Zn0.5Fe2O4 Magnetic Nanoparticles. J. Water Reuse Desal. 2016, 6(4), 562–573. DOI: 10.2166/wrd.2016.073.
  • Ercuta, A. Sensitive AC Hysteresis Graph of Extended Driving Field Capability. IEEE Trans. Instrum. Meas. 2019, 69, 1643–1651. DOI: 10.1109/TIM.2019.2917237.
  • Almásy, L. New Measurement Control Software on the Yellow Submarine SANS Instrument at the Budapest Neutron Centre. J. Surf. Investig. 2021, 15, 527–531. DOI: 10.1134/S1027451021030046.
  • Borah, D.; Satokawa, S.; Kato, S.; Kojima, T. Surface-modified Carbon Black for As(V) Removal. J. Colloid Interface Sci. 2008, 319, 53–62. DOI: 10.1016/j.jcis.2007.11.019.
  • Borah, D.; Satokawa, S.; Kato, S.; Kojima, T. Sorption of As(V) from Aqueous Solution Using Acid Modified Carbon Black. J. Hazard. Mater. 2009, 162, 1269–1277. DOI: 10.1016/j.jhazmat.2008.06.015.
  • Beaucage, G. Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. J. Appl. Cryst. 1996, 29, 34–146. DOI: 10.1107/S0021889895011605.
  • Sing, K. S. W.; Everett, D. H., and Haul, R. A. W.Moscou, l.; Pierotti, R. A.; Rouquerol , J.; Siemieniewska, T., Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. DOI: 10.1351/pac198557040603.
  • Kucuker, M. A.; Wieczorek, N.; Kuchta, K.; Copty, N. K.; Xu, B. Biosorption of Neodymium on Chlorella Vulgaris in Aqueous Solution Obtained from Hard Disk Drive Magnets. Plos One 2017, 12, 0175255. DOI: 10.1371/journal.pone.0175255.
  • Wasikiewicz, J. M.; Mitomo, H.; Seko, N.; Tamada, M., and Yoshii, F., Platinum and Palladium Ions Adsorption at the Trace Amounts by Radiation Crosslinked Carboxymethyl chitin and Carboxymethyl chitosan Hydrogels. J. Appl. Polym. Sci. 2007, 104, 4015–4023. DOI: 10.1002/app.26034.
  • Woińska, S.; Godlewska-Żyłkiewicz, B. Determination of Platinum and Palladium in Road Dust after Their Separation on Immobilized Fungus by Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta B. 2011, 66, 522–528. DOI: 10.1016/j.sab.2011.03.009.
  • Morisada, S.; Kim, Y.-H.; Yakuwa, S.; Ogata, T., and Nakano, Y.,Improved Adsorption and Separation of palladium(II) and platinum(IV) in Strong Hydrochloric Acid Solutions Using Thiocyanate-retaining Tannin Gel. J. Appl. Polym. Sci. 2012, 126, 478–483. DOI: 10.1002/app.36738.
  • Yen, C.-H.; Lien, H.-L.; Chung, J.-S.; Yeh, H.-D. Adsorption of Precious Metals in Water by Dendrimer Modified Magnetic Nanoparticles. J. Hazard. Mater. 2017, 322 A, 215–222. DOI: 10.1016/j.jhazmat.2016.02.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.