263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant molecule useful in the stabilization of nanoparticles in water suspension

, , , , , , , & show all
Pages S76-S90 | Received 29 Dec 2021, Accepted 10 Jan 2022, Published online: 22 Jan 2022

References

  • Illés, E.; Szekeres, M.; Kupcsik, E.; Tóth, I. Y.; Farkas, K.; Jedlovszky-Hajdú, A.; Tombácz, E. PEGylation of Surfacted Magnetite Core-shell Nanoparticles for Biomedical Application. Coll. Surf. A. 2014, 460, 429–440. DOI: 10.1016/j.colsurfa.2014.01.043.
  • Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. J. Mater. Chem. 2004, 14(14), 2161–2175. DOI: 10.1039/b402025a.
  • Rosen, J. E.; Chan, L.; Shieh, D. B.; Gu, F. X. Iron Oxide Nanoparticles for Targeted Cancer Imaging and Diagnostics. Nanomed. Nanotechnol. Biol. Med. 2012, 8(3), 275–290. DOI: 10.1016/j.nano.2011.08.017.
  • Mahdavi, M.; Ahmad, M. B.; Haron, M.; Namvar, F.; Nadi, B.; Rahman, M. Z. A.; Amin, J. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules. 2013, 18(7), 7533–7548. DOI: 10.3390/molecules18077533.
  • Silva, C.; Oliveira, T. R.; Mamani, J. B.; Malheiros, S. M.; Malavolta, L.; Pavon, L. F.; Sibov, T. T.; Amaro, E., Jr.; Tannús, A.; Vidoto, E. L., et al. Application of Hyperthermia Induced by Superparamagnetic Iron Oxide Nanoparticles in Gliomatreatment. Int. J. Nanomed. 2011, 6, 591–603.
  • Ladja, R.; Bitar, A.; Eissa, M. M.; Fessi, H.; Mugnier, Y.; Le Dantec, R.; Elaissari, A. Polymer Encapsulation of Inorganic Nanoparticles for Biomedical Applications. Int. J. Pharm. 2013, 458(1), 230–241. DOI: 10.1016/j.ijpharm.2013.09.001.
  • Tietze, R.; Lyer, S.; Endgelhorn, T.; Endgelhorn, T.; Schwarz, M.; Schwarz, M.; Eckert, E.; Göen, T.; Vasylyev, S.; Peukert, W. Efficient Drug delivery Using Magnetic Nanoparticles-biodistribution and Therapeutic Effects in Tumour Bearing Rabbits. Nanomed. 2013, 9(7), 961–971. DOI: 10.1016/j.nano.2013.05.001.
  • Tietze, R.; Jurgons, R.; Lyer, S.; Schreiber, E.; Wiekhorst, F.; Eberbeck, D.; Richter, H.; Steinhoff, U.; Trahms, L.; Alexiou, C. Quantification of Drug-loaded Magnetic Nanoparticles in Rabbit Liver and Tumour after in Vivo Administration. J. Magn. Magn. Mater. 2009, 321(10), 1465–1468. DOI: 10.1016/j.jmmm.2009.02.068.
  • Racuciu, M.; Creanga, D. Magnetite/tartaric Acid Nanosystems for Experimental Study of Bioeffects on Zea Mays Growth. Rom. J. Phys. 2017, 62(804), 3–4.
  • Oprica, L.; Nadejde, C.; Andries, M.; Puscasu, E.; Creanga, D.; Balasoiu, M. Magnetic Contamination of Environment–laboratory Simulation of Mixed Iron Oxides Impact on Microorganism Cells. Environ. Eng. Manage. J. 2015, 14(3), 581–586. DOI: 10.30638/eemj.2015.063.
  • Dorniani, D.; Hussei, M. Z.; Kura, A. U.; Fakurazi, S.; Shaari, A.; Ahmad, Z. Preparation of Fe3O4 Magnetic Nanoparticles Coated with Gallic Acid for Drug Delivery. Int. J. Nanomed. 2014, 7, 5745–5755.
  • Zhongbing, L.; Guangjun, N.; Peter, S.; Huiru, T.; Baolu, Z. Structure–activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives. Neurochem. Int. 2006, 48(4), 263–274. DOI: 10.1016/j.neuint.2005.10.010.
  • Shah, S. T.; Yehye, W. A.; Saad, O.; Simarani, K.; Chowdhury, Z. Z.; Alhadi, A. A.; Al-Ani, L. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. Nanomater. 2017, 7(10), 306. DOI: 10.3390/nano7100306.
  • Kanai, S.; Okano, H. Mechanism of the Protective Effects of Sumac Gall Extract and Gallic Acid on CCl4-induced Acute Liver Injury in Rats. Am. J. Chin. Med. 1998, 26( 03n04), 333–341. DOI: 10.1142/S0192415X98000373.
  • Dwibedy, P.; Dey, G. R.; Naik, D. B.; Kishore, K.; Moorthy, N. Pulse Radiolysis Studies on Redox Reaction of Gallic Acid: One Electron Oxidation of Gallic Acid by Hallic Acid OH Adduct. Phys. Chem. Chem. Phys. 1999, 1(8), 915–1918. DOI: 10.1039/a809147a.
  • Sakagami, H.; Satoh, K.; Hatano, T.; Yoshida, T.; Okuda, T. Possible Role of Radical Intensity and Oxidation Potential for Gallic Acid-induced Apoptosis. Anticancer Res. 1997, 17(1A), 377–380.
  • Badhani, B.; Sharmaa, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv. 2015, 5(35), 27540–27557. DOI: 10.1039/C5RA01911G.
  • Tiriba, G.; Balasoiu, M.; Puscasu, E.; Sacarescu, L.; Stan, C.; Creanga, D. Microstructural Characterization of Co-doped Iron Oxide Nanoparticles. UPB Sci. Bull. Series A: Appl. Math. Phys. 2017, 79(4), 327–336.
  • Nadejde, C.; Puscasu, E.; Brinza, F.; Ursu, L.; Creanga, D.; Stan, C. Preparation of Soft Magnetic Materials and Characterization with Investigation Methods for Fluid Samples. UPB Sci.Bull. Ser. A: Appl. Math.Phys. 2015, 77, 277–284.
  • Racuciu, M.; Creanga, D.; Nadejde, C. Comparison among the Physical Properties of Various Suspensions of Magnetite Nanoparticles Stabilized in Water Using Different Organic Shells. UPB Sci. Bull. Ser. A: Appl. Math. Phys. 2013, 75(3), 209–216.
  • Cirtoaje, C.; Petrescu, E.; Stan, C.; Creanga, D. Ferromagnetic Nanoparticles Suspensions in Twisted Nematic. Physica E. 2016, 79, 38–43. DOI: 10.1016/j.physe.2015.12.006.
  • Bodale, I.; Oprisan, M.; Stan, C.; Tufescu, F.; Racuciu, M.; Creanga, D.; Balasoiu, M. In 3rd International Conference on Nanotechnologies and Biomedical Engineering. IFMBE Proceedings, 55, 153–156, 2016. Singapore: Springer. https://doi.org/10.1007/978-981-287-736-9_37
  • Spartan’18 Software, Wavefunction, Inc.
  • Hassan, H. B. Density Function Theory B3LYP/6-31G**Calculation of Geometry Optimization and Energies of Donor-bridge-acceptor Molecular System. Int. J. Cur. Eng. Technol. 2016, 4(4), 2342–2345.
  • Massart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn. 1981, 17(2), 1247–1248. DOI: 10.1109/TMAG.1981.1061188.
  • Szekeres, M.; Illés, E.; Janko, C.; Farkas, K.; Tóth, I. Y.; Nesztor, D.; Zupkó, I.; Földesi, I.; Alexiou, C.; Tombácz, E. Hemocompatibility and Biomedical Potential of Poly(gallic Acid) Coated Iron Oxide Nanoparticles for Theranostic Use. J. Nanomed. Nanotechnol. 2015, 5(6), 1000252.
  • Lichtenthaler, H. K.; Wellburn, A. R. Determinations of Total Carotenoids and Chlorophylls a and B of Leaf Extracts in Different Solvents. Biochem Soc. Trans. 1983, 11(5), 591–592. DOI: 10.1042/bst0110591.
  • Santos-Carballal, D.; Roldan, A.; Grau-Crespo, R.; de Leeuw, N. H. A DFT Study of the Structures, Stabilities and Redox Behavior of the Major Surfaces of Magnetite Fe3O4. Phys. Chem. Chem. Phys. 2014, 16(39), 21082–21097. DOI: 10.1039/C4CP00529E.
  • Ganapathe, L. S.; Mohamed, M. A.; Yunus, R. M.; Berhanuddin, D. D. Magnetite (Fe3o4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry. 2020, 6(4), 103390. DOI: 10.3390/magnetochemistry6040068.
  • Mohammadi, M.; Aghaei, F. P. Magnetite Fe3O4 Surface as an Effective Drug Delivery System for Cancer Treatment Drugs: Density Functional Theory Study. J. Biomolec. Struct. Dynamics. 2021, 8(39), 2798–2805. DOI: 10.1080/07391102.2020.1754915.
  • Brymora, K.; Modeling of magnetic and optical properties of nanoparticles in medical interest. Thesis, Université du Maine, France, 2013.
  • Liu, H.; Valentin, C. Shaping Magnetite Nanoparticles from First Principles. Phys. Rev. Lett. 2019, 123(18), 186101. DOI: 10.1103/PhysRevLett.123.186101.
  • Pardeshi, S.; Dhodapkar, R.; Kumar, A. Quantum Chemical Density Functional Theory Studies on the Molecular Structure and Vibrational Spectra of Gallic Acid Imprinted Polymers. Spectrochim. Acta Part A. 2013, 116, 562–573. DOI: 10.1016/j.saa.2013.07.067.
  • Zhang, G.; Musgrave, C. B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J. Phys. Chem. A. 2007, 111, 554–1561.
  • Lu, Z.; Nie, G.; Belton, P. S.; Tang, H.; Zhao, B. Structure Activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives. Neurochem. Int. 2006, 48(4), 263–274. DOI: 10.1016/j.neuint.2005.10.010.
  • Martinez, S.; Stagljar, I. Correlation between the Molecular Structure and the Corrosion Inhibition Efficiency of Chestnut Tannin in Acidic Solutions. J. Mol. Struct. 2003, 640(1–3), 167–174. DOI: 10.1016/j.theochem.2003.08.126.
  • Domínguez, E.; Moliné, M. P.; Churio, M. S.; Arce, V. B.; Mártire, D. O.; Mendiar, S. N.; Álvarez, B. S.; Gende, L. B.; Damiani, N. Bioactivity of Gallic Acid–conjugated Silica Nanoparticles against Paenibacillus Larvae and Their Host. Apismellifera Honeybee. Apidologie. 2019, 50(5), 616–631. DOI: 10.1007/s13592-019-00675-y.
  • Eidi, E.; Kassaee, M. Z.; Nasresfahani, Z.; Cummings, P. T. Gallic Acid Functionalized Magnetic Nanoparticles: A Convenient and Green Approach for Synthesis of α-aminonitriles under Solvent-free Conditions. Res. Chem. Intermed. 2019, 45(2), 303–314. DOI: 10.1007/s11164-018-3603-x.
  • ICSD Card No. 98-015-8741
  • Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56(10), 978–982. DOI: 10.1103/PhysRev.56.978.
  • Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q. L.; Roch, A. Magnetic Resonance Relaxation Properties of Superparamagnetic Particles. Nanomed. Nanobiotechnol. 2009, 1(3), 299–310. DOI: 10.1002/wnan.36.
  • Swanson, H. E.; Tatge, E. Standard X-ray Diffraction Powder Patterns; Government Printing Office: Washington, 1967.
  • Nadim, A. H.; Al-Ghobashy, M. A.; Nebsena, M.; Shehata, M. A. Gallic Acid Magnetic Nanoparticles for Photocatalytic Degradation of Meloxicam: Synthesis, Characterization and Application to Pharmaceutical Wastewater Treatment. RSC Adv. 2015, 5(127), 104981–104990. DOI: 10.1039/C5RA20281G.
  • Yu, S.; Zhang, H.; Zhang, S.; Zhong, M.; Fan, H. Ferrite Nanoparticles-based Reactive Oxygen Species-mediated Cancer Therapy. Front. Chem. 2021, 9, 651053. DOI: 10.3389/fchem.2021.651053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.