240
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Antheraea mylitta sericin hydrogel film via non toxic crosslinking citric acid with antioxidant properties

, , &
Pages 102-116 | Received 29 Jun 2022, Accepted 12 Jan 2023, Published online: 31 Jan 2023

References

  • Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-Based Biomaterials. Biomaterials. 2003, 24(3), 401–416. DOI: 10.1016/S0142-9612(02)00353-8.
  • Jolly, M. S.; Chaturvedi, S. N.; Prasad, S. Survey of Tasar Crops in India. Ind. J. Sericult. 1968, 7, 56–57.
  • Shaw, J.; Smith, S. Amino-Acids of Silk Sericin. Nature. 1951, 168(4278), 745. DOI: 10.1038/168745a0.
  • Magoshi, J.; Magoshi, Y.; Nakamura, S. Physical Properties and Structure of Silk. 10: The Mechanism of Fibre Formation from Liquid Silk of Silkworm Bombyx Mori. Polym. Commun. 1985, 26, 309–311.
  • Dash, R.; Ghosh, S. K.; Kaplan, D. L.; Kundu, S. C. Purification and Biochemical Characterization of a 70 KDa Sericin from Tropical Tasar Silkworm, Antheraea Mylitta. Comp. Biochem. Physiol., Part B. 2007, 147(1), 129–134. DOI:10.1016/j.cbpb.2007.01.009.
  • Gamo, T.; Inokuchi, T.; Laufer, H. Polypeptides of Fibroin and Sericin Secreted from the Different Sections of the Silk Gland in Bombyx Mori. Insect Biochem. 1977, 7(3), 285–295. DOI:10.1016/0020-1790(77)90026-9.
  • Ahmad, R.; Kamra, A.; Hasnain, S. E. Fibroin Silk Proteins from the Nonmulberry Silkworm Philosamia Ricini are Biochemically and Immunochemically Distinct from Those of the Mulberry Silkworm Bombyx Mori. DNA Cell Biol. 2004, 23(3), 149–154. DOI: 10.1089/104454904322964742.
  • Naskar, D.; Barua, R. R.; Ghosh, A. K.; Kundu, S. C. 1 - Introduction to Silk Biomaterials. In Silk Biomaterials for Tissue Engineering and Regenerative Medicine, Kundu, S. C., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 3–40. DOI: 10.1533/9780857097064.1.3.
  • Dash, B. C.; Mandal, B. B.; Kundu, S. C. Silk Gland Sericin Protein Membranes: Fabrication and Characterization for Potential Biotechnological Applications. J. Biotechnol. 2009, 144(4), 321–329. DOI: 10.1016/j.jbiotec.2009.09.019.
  • Senakoon, W.; Nuchadomrong, S.; Sirimungkararat, S.; Kitikoon, P. Antibacterial Action of Eri (Samia Ricini) Sericin against Escherichia Coli and Staphylococcus Aureus. Asian J. Food Agric. Ind. 2009, 8.
  • Dash, R.; Acharya, C.; Bindu, P. C.; Kundu, S. C. Antioxidant Potential of Silk Protein Sericin against Hydrogen Peroxide-Induced Oxidative Stress in Skin Fibroblasts. BMB Rep. 2008, 41(3), 236–241. DOI: 10.5483/BMBRep.2008.41.3.236.
  • Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M. A.; Tosca, M. C.; Marazzi, M.; Vigo, D., et al. Sericins Exhibit ROS-Scavenging, Anti-Tyrosinase, Anti-Elastase, and in Vitro Immunomodulatory Activities. Int. J. Biol. Macromol. 2013, 58, 47–56. DOI: 10.1016/j.ijbiomac.2013.03.054.
  • Dash, R.; Mandal, M.; Ghosh, S. K.; Kundu, S. Silk Sericin Protein of Tropical Tasar Silkworm Inhibits UVB-Induced Apoptosis in Human Skin Keratinocytes. Mol. Cell. Biochem. 2008, 311(1), 111–119. DOI: 10.1007/s11010-008-9702-z.
  • Kundu, S. C.; Kundu, B.; Talukdar, S.; Bano, S.; Nayak, S.; Kundu, J.; Mandal, B. B.; Bhardwaj, N.; Botlagunta, M.; Dash, B. C., et al. Nonmulberry Silk Biopolymers. Biopolymers. 2012, 97(6), 455–467. DOI: 10.1002/bip.22024.
  • Mandal, B. B.; Priya, A. S.; Kundu, S. C. Novel Silk Sericin/Gelatin 3-D Scaffolds and 2-D Films: Fabrication and Characterization for Potential Tissue Engineering Applications. Acta Biomater. 2009, 5(8), 3007–3020. DOI: 10.1016/j.actbio.2009.03.026.
  • Teramoto, H.; Miyazawa, M. Molecular Orientation Behavior of Silk Sericin Film as Revealed by ATR Infrared Spectroscopy. Biomacromolecules. 2005, 6(4), 2049–2057. DOI: 10.1021/bm0500547.
  • Teramoto, H.; Kakazu, A.; Asakura, T. Native Structure and Degradation Pattern of Silk Sericin Studied by 13 C NMR Spectroscopy. Macromolecules. 2006, 39(1), 6–8. DOI: 10.1021/ma0521147.
  • Nayak, S.; Talukdar, S.; Kundu, S. C. Potential of 2D Crosslinked Sericin Membranes with Improved Biostability for Skin Tissue Engineering. Cell Tissue Res. 2012, 347(3), 783–794. DOI: 10.1007/s00441-011-1269-4.
  • Zhang, H.; Yang, M.; Min, S.; Feng, Q.; Gao, X.; Zhu, L. Preparation and Characterization of a Novel Spongy Hydrogel from Aqueous Bombyx Mori Sericin. e-Polymers. 2008, 8(1), 1. DOI: 10.1515/epoly.2008.8.1.761.
  • Zhang, Q.; Dong, P.; Chen, L.; Wang, X.; Lu, S. Genipin-Cross-Linked Thermosensitive Silk Sericin/Poly (N-Isopropylacrylamide) Hydrogels for Cell Proliferation and Rapid Detachment. J. Biomed. Mater. Res., Part A. 2014, 102(1), 76–83. DOI: 10.1002/jbm.a.34670.
  • Shi, L.; Yang, N.; Zhang, H.; Chen, L.; Tao, L.; Wei, Y.; Liu, H.; Luo, Y. A Novel Poly (γ-Glutamic Acid)/Silk-Sericin Hydrogel for Wound Dressing: Synthesis, Characterization and Biological Evaluation. Mater. Sci. Eng., C. 2015, 48, 533–540. DOI: 10.1016/j.msec.2014.12.047.
  • Hu, X. Synthesis and Properties of Silk Sericin-g-Poly(Acrylic Acid-Co-Acrylamide) Superabsorbent Hydrogel. Polym. Bull. 2011, 66(4), 447–462. DOI: 10.1007/s00289-010-0285-y.
  • Maisani, M.; Pezzoli, D.; Chassande, O.; Mantovani, D. Cellularizing Hydrogel-Based Scaffolds to Repair Bone Tissue: How to Create a Physiologically Relevant Micro-Environment? J. Tissue Eng. 2017, 8, 204173141771207. DOI: 10.1177/2041731417712073.
  • Mandal, B. B.; Ghosh, B.; Kundu, S. C. Non-Mulberry Silk Sericin/Poly (Vinyl Alcohol) Hydrogel Matrices for Potential Biotechnological Applications. Int. J. Biol. Macromol. 2011, 49(2), 125–133. DOI: 10.1016/j.ijbiomac.2011.03.015.
  • Nayak, S.; Kundu, S. C. Sericin-Carboxymethyl Cellulose Porous Matrices as Cellular Wound Dressing Material: Sericin-Carboxymethyl Cellulose Porous Matrices. J. Biomed. Mater. Res. 2014, 102(6), 1928–1940. DOI: 10.1002/jbm.a.34865.
  • Sapru, S.; Ghosh, A. K.; Kundu, S. C. Non-Immunogenic, Porous and Antibacterial Chitosan and Antheraea Mylitta Silk Sericin Hydrogels as Potential Dermal Substitute. Carbohydr. Polym. 2017, 167, 196–209. DOI: 10.1016/j.carbpol.2017.02.098.
  • Lungu, A.; Albu, M. G.; Stancu, I. C.; Florea, N. M.; Vasile, E.; Iovu, H. Superporous Collagen-Sericin Scaffolds. J. Appl. Polym. Sci. 2013, 127(3), 2269–2279. DOI: 10.1002/app.37934.
  • Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking Biopolymers for Biomedical Applications. Trends Biotechnol. 2015, 33(6), 362–369. DOI: 10.1016/j.tibtech.2015.03.008.
  • Bagheri, L.; Yarmand, M.; Madadlou, A.; Mousavi, M. E. Transglutaminase-Induced or Citric Acid-Mediated Cross-Linking of Whey Proteins to Tune the Characteristics of Subsequently Desolvated Sub-Micron and Nano-Scaled Particles. J. Microencapsulation. 2014, 31(7), 636–643. DOI: 10.3109/02652048.2014.911377.
  • Lusiana, R. A.; Siswanta, D.; Mudasir, M. Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol) Blend Membranes for Creatinine Transport. Indones. J. Chem. 2018, 16(2), 144. DOI: 10.22146/ijc.21157.
  • Capanema, N. S. V.; Mansur, A. A. P.; de Jesus, A. C.; Carvalho, S. M.; de Oliveira, L. C.; Mansur, H. S. Superabsorbent Crosslinked Carboxymethyl Cellulose-PEG Hydrogels for Potential Wound Dressing Applications. Int. J. Biol. Macromol. 2018, 106, 1218–1234. DOI: 10.1016/j.ijbiomac.2017.08.124.
  • Kurioka, A.; Kurioka, F.; Yamazaki, M. Characterization of Sericin Powder Prepared from Citric Acid-Degraded Sericin Polypeptides of the Silkworm, Bombyx Mori. Biosci. Biotechnol., Biochem. 2004, 68(4), 774–780. DOI: 10.1271/bbb.68.774.
  • Reddy, N.; Warner, K.; Yang, Y. Low-Temperature Wet-Cross-Linking of Silk with Citric Acid. Ind. Eng. Chem. Res. 2011, 50(8), 4458–4463. DOI: 10.1021/ie102226f.
  • Yun, H.; Oh, H.; Kim, M. K.; Kwak, H. W.; Lee, J. Y.; Um, I. C.; Vootla, S. K.; Lee, K. H. Extraction Conditions of Antheraea Mylitta Sericin with High Yields and Minimum Molecular Weight Degradation. Int. J. Biol. Macromol. 2013, 52, 59–65. DOI: 10.1016/j.ijbiomac.2012.09.017.
  • Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958, 181(4617), 1199–1200. DOI: 10.1038/1811199a0.
  • Oyaizu, M. Studies on Products of Browning Reaction. Jpn. J. Nutr. Diet. 1986, 44(6), 307–315. DOI: 10.5264/eiyogakuzashi.44.307.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol. Med. 1999, 26(9), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Ng, K. W.; Leong, D. T. W.; Hutmacher, D. W. The Challenge to Measure Cell Proliferation in Two and Three Dimensions. Tissue Eng., Part A. 2005, 11(1–2), 182–191. DOI:10.1089/ten.2005.11.182.
  • Xing, T. L.; Liu, J.; Chen, G. Q.; Sheng, J. Y.; Sun, D. Q.; Chen, Z. L. Study on Finishing of Cotton Fabric by Sericin and Its Properties. AMR. 2011, 175–176, 624–628. https://doi.org/10.4028/www.scientific.net/AMR.175-176.624.
  • Soheilmoghaddam, F.; Sharifzadeh, G.; Adelnia, H.; Wahit, M. U. Development of Regenerated cellulose/citric Acid Films with Ionic Liquids. J. Polym. Environ. 2022, 30(2), 613–621. DOI: 10.1007/s10924-021-02218-y.
  • He, H.; Cai, R.; Wang, Y.; Tao, G.; Guo, P.; Zuo, H.; Chen, L.; Liu, X.; Zhao, P.; Xia, Q. Preparation and Characterization of Silk Sericin/PVA Blend Film with Silver Nanoparticles for Potential Antimicrobial Application. Int. J. Biol. Macromol. 2017, 104, 457–464. DOI: 10.1016/j.ijbiomac.2017.06.009.
  • Tsukada, M.; Bertholon, G. Preliminary Study of the Physicochemical Characteristics of Silk Sericin. Bulletin de la Societe Francaise D’Histoire Des Hopitaux. 1981, 10, 141–154.
  • Servoli, E.; Maniglio, D.; Motta, A.; Predazzer, R.; Migliaresi, C. Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts. Macromol. Biosci. 2005, 5(12), 1175–1183. DOI: 10.1002/mabi.200500137.
  • Cui, L.; Yao, Y.; Yim, E. K. F. The Effects of Surface Topography Modification on Hydrogel Properties. APL Bioeng. 2021, 5(3), 031509. DOI:10.1063/5.0046076.
  • Lord, M. S.; Foss, M.; Besenbacher, F. Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response. Nano Today. 2010, 5(1), 66–78. DOI: 10.1016/j.nantod.2010.01.001.
  • Yeon, B.; Park, M. H.; Moon, H. J.; Kim, S. J.; Cheon, Y. W.; Jeong, B. 3D Culture of adipose-tissue-derived Stem Cells Mainly Leads to Chondrogenesis in Poly (Ethylene Glycol)-poly (L-alanine) Diblock Copolymer Thermogel. Biomacromolecules. 2013, 14(9), 3256–3266. DOI: 10.1021/bm400868j.
  • Abou‐Yousef, H.; Kamel, S. High Efficiency Antimicrobial Cellulose‐based Nanocomposite Hydrogels. J. Appl. Polym. Sci. 2015, 132(31). DOI: 10.1002/app.42327.
  • Agrawal, C. M.; Ray, R. B. Biodegradable Polymeric Scaffolds for Musculoskeletal Tissue Engineering. J. Biomed. Mater. Res. 2001, 55(2), 141–150. https://doi.org/10.1002/1097-4636(200105)55:2%3C141::aid-jbm1000/3E3.0.co;2-j.
  • Zhu, J.; Han, H.; Li, F.; Wang, X.; Yu, J.; Qin, X.; Wu, D. Peptide-functionalized Amino acid-derived pseudoprotein-based Hydrogel with Hemorrhage Control and Antibacterial Activity for Wound Healing. Chem. Mater. 2019, 31(12), 4436–4450. DOI: 10.1021/acs.chemmater.9b00850.
  • Tsukada, M.; Bertholon, G. Preliminary Study of the Physicochemical Characteristics of Silk Sericin. Bull. Sci. Inst. Text. Fr. 1981, 10, 141–154.
  • Ghorpade, V. S.; Yadav, A. V.; Dias, R. J.; Mali, K. K.; Pargaonkar, S. S.; Shinde, P. V.; Dhane, N. S. Citric Acid Crosslinked Carboxymethylcellulose-Poly(Ethylene Glycol) Hydrogel Films for Delivery of Poorly Soluble Drugs. Int. J. Biol. Macromol. 2018, 118, 783–791. DOI: 10.1016/j.ijbiomac.2018.06.142.
  • Qi, Q.; Yao, Y.; Jia, X.; Meng, Y.; Zhao, K.; Jian, Y. Effects of Polyethylene Glycol Content on the Properties of a Silk Fibroin/Nano-Hydroxyapatite/Polyethylene Glycol Electrospun Scaffold. RSC Adv. 2019, 9(58), 33941–33948. DOI: 10.1039/C9RA06654C.
  • Carocho, M.; Ferreira, I. C. F. R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. DOI: 10.1016/j.fct.2012.09.021.
  • Antolovich, M.; Prenzler, P. D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for Testing Antioxidant Activity. Analyst. 2002, 127(1), 183–198. DOI: 10.1039/B009171P.
  • Wu, J.; Zhao, C.; Lin, W.; Hu, R.; Wang, Q.; Chen, H.; Li, L.; Chen, S.; Zheng, J. Binding Characteristics between Polyethylene Glycol (PEG) and Proteins in Aqueous Solution. J. Mater. Chem. B. 2014, 2(20), 2983. DOI: 10.1039/c4tb00253a.
  • Wang, Y.; Liang, M.; Zheng, Z.; Shi, L.; Su, B.; Liu, J.; Kaplan, D. L.; Zhang, B.; Wang, X. Adhesion Prevention after Laminectomy Using Silk-Polyethylene Glycol Hydrogels. Adv. Healthcare Mater. 2015, 4(14), 2120–2127. DOI: 10.1002/adhm.201500392.
  • Zhu, J. Bioactive Modification of Poly(Ethylene Glycol) Hydrogels for Tissue Engineering. Biomaterials. 2010, 31(17), 4639–4656. DOI: 10.1016/j.biomaterials.2010.02.044.
  • Naskar, D.; Sapru, S.; Ghosh, A. K.; Reis, R. L.; Dey, T.; Kundu, S. C. Nonmulberry Silk Proteins: Multipurpose Ingredient in Bio-Functional Assembly. Biomed. Mater. (Bristol, U. K.). 2021, 16(6), 062002. DOI: 10.1088/1748-605x/ac20a0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.