107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Chromolaena odorata (Siam weed) loaded hydrogels and the effect of electrical potentials on the total flavonoids releasing behavior for wound healing application

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 219-228 | Received 17 Feb 2023, Accepted 13 Apr 2023, Published online: 23 Apr 2023

References

  • Kaiser, P.; Wächter, J.; Windbergs, M. Therapy of Infected Wounds: Overcoming Clinical Challenges by Advanced Drug Delivery Systems. Drug. Deliv. Transl. Res. 2021, 11(4), 1545–1567. DOI: 10.1007/s13346-021-00932-7.
  • Yahya, E. B.; Alzalouk, M. M.; Alfallous, K. A.; Abogmaza, A. F. Antibacterial Cellulose-Based Aerogels for Wound Healing Application: A Review. Biomed. Res. Ther. 2020, 7(10), 4032–4040. DOI: 10.15419/bmrat.v7i10.637.
  • Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials. 2018, 182, 185–199. DOI: 10.1016/j.biomaterials.2018.08.044.
  • Cai, Y.; Tian, Q.; Liu, C.; Fang, L. Development of Long-Acting Rivastigmine Drug-In-Adhesive Patch Utilizing Ion-Pair Strategy and Characterization of Controlled Release Mechanism. Eur. J. Pharm. Sci. 2021, 161, 105774. DOI: 10.1016/j.ejps.2021.105774.
  • Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. DOI: 10.1016/j.jddst.2021.102914.
  • Berkland, C.; King, M.; Cox, A.; Kim, K. K.; Pack, D. W. Precise Control of PLG Microsphere Size Provides Enhanced Control of Drug Release Rate. J. Control Release. 2002, 82(1), 137–147. DOI: 10.1016/S0168-3659(02)00136-0.
  • Sezer, A. D.; Cevher, E. Biopolymers as Wound Healing Materials: Challenges and New Strategies. In Biomaterials Applications for Nanomedicine; Rosario, P., Ed.; Croatia: IntechOpen, 2011; pp 383–414. DOI:10.5772/1957.
  • Dong, Y.; Zheng, Y.; Zhang, K.; Yao, Y.; Wang, L.; Li, X.; Yu, J.; Ding, B. Electrospun Nanofibrous Materials for Wound Healing. Adv. Fib. Mater. 2020, 2(4), 212–227. DOI: 10.1007/s42765-020-00034-y.
  • Barnthip, N.; Teeka, J.; Kantha, P.; Teepoo, S.; Damjuti, W. Fabrication and Characterization of Polycaprolactone/Cellulose Acetate Blended Nanofiber Mats Containing Sericin and Fibroin for Biomedical Application. Sci. Rep. 2022, 12(1), 22370. DOI: 10.1038/s41598-022-26908-2.
  • Aziz, A. Y. R.; Hasir, N. A.; Imran, N. B. P.; Hamdan, M. F.; Mahfufah, U.; Wafiah, N.; Arjuna, A.; Utami, R. N.; Permana, A. D. Development of Hydrogel-Forming Microneedles for Transdermal Delivery of Albendazole from Liquid Reservoir. J. Biomat. Sci. Polym. Ed. Just-accepted. 2022, 1–17. DOI: 10.1080/09205063.2022.2157671.
  • Ehtesabi, H.; Nasri, R. Carbon Dot-Based Materials for Wound Healing Applications. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021, 12(2), 025006. DOI: 10.1088/2043-6262/abffc9.
  • Li, Y.; Jiang, H.; Zheng, W.; Gong, N.; Chen, L.; Jiang, X.; Yang, G. Bacterial Cellulose–Hyaluronan Nanocomposite Biomaterials as Wound Dressings for Severe Skin Injury Repair. J. Mater. Chem. B. 2015, 3(17), 3498–3507. DOI: 10.1039/C4TB01819B.
  • Breuing, K.; Eriksson, E.; Liu, P.; Miller, D. R. Healing of Partial Thickness Porcine Skin Wounds in a Liquid Environment. J. Surg. Res. 1992, 52(1), 50–58. DOI: 10.1016/0022-4804(92)90278-8.
  • Bhubhanil, S.; Talodthaisong, C.; Khongkow, M.; Namdee, K.; Wongchitrat, P.; Yingmema, W.; Hutchison, J. A.; Lapmanee, S.; Kulchat, S. Enhanced Wound Healing Properties of Guar Gum/curcumin-Stabilized Silver Nanoparticle Hydrogels. Sci. Rep. 2021, 11(1), 1–14. DOI: 10.1038/s41598-021-01262-x.
  • Barnthip, N.; Paosoi, J.; Pinyakong, O. Concentration Effect of Chromolaena Odorata (Siam Weed) Crude Extract on Size and Properties of Gelatin Nanofibers Fabricated by Electrospinning Process. J. Ind. Text. 2022, 51(1), 1499S–1510S. DOI: 10.1177/1528083720910239.
  • Azmi, S.; Razak, S. I. A.; Kadir, M. R. A.; Iqbal, N.; Hassan, R.; Nayan, N. H. M.; Wahab, A. H. A.; Shaharuddin, S. Reinforcement of Poly(vinyl Alcohol) Hydrogel with Halloysite Nanotubes as Potential Biomedical Materials. Soft Matter. 2017, 15(1), 45–54. DOI: 10.1080/1539445X.2016.1242500.
  • Kass, L. E.; Nguyen, J. Nanocarrier‐hydrogel Composite Delivery Systems for Precision Drug Release, Wiley Interdisciplinary Reviews. Nanomed. Nanobiotechnol. 2022, 14(2), e1756. DOI: 10.1002/wnan.1756.
  • Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A. A. Controlled Drug Release from Hydrogel-Based Matrices: Experiments and Modeling. Int. J. Pharm. 2015, 486(1–2), 144–152. DOI: 10.1016/j.ijpharm.2015.03.054.
  • Mirzaei, B. E.; Ramazani, S. A. A.; Shafiee, M.; Danaei, M. Studies on Glutaraldehyde Crosslinked Chitosan Hydrogel Properties for Drug Delivery Systems. Int. J. Polym. Mater. Polym. Biomater. 2013, 62(11), 605–611. DOI: 10.1080/00914037.2013.769165.
  • Wu, X.; Black, L.; Santacana‐laffitte, G.; Patrick, C. W., Jr. Preparation and Assessment of Glutaraldehyde‐crosslinked Collagen–Chitosan Hydrogels for Adipose Tissue Engineering. J. Biomed. Mater. Res. A. 2007, 81(1), 59–65. DOI: 10.1002/jbm.a.31003.
  • Tian, Z.; Liu, W.; Li, G. The Microstructure and Stability of Collagen Hydrogel Cross-Linked by Glutaraldehyde. Polym. Degrad. Stab. 2016, 130, 264–270. DOI: 10.1016/j.polymdegradstab.2016.06.015.
  • Barnthip, N.; Muakngam, A. Preparation of Cellulose Acetate Nanofibers Containing Centella Asiatica Extract by Electrospinning Process as the Prototype of Wound-Healing Materials. J. Bionanosci. 2014, 8(4), 313–318. DOI: 10.1166/jbns.2014.1240.
  • Barnthip, N. Preparation of Honey-Gelatin Nanofibers as the Prototype of Wound-Healing and Covering Materials by Electrospinning Process. J. Bionanosci. 2015, 9(6), 475–479. DOI: 10.1166/jbns.2015.1330.
  • Vamvanij, N.; Chuangsuwanich, A.; Charoonrut, P.; Cheunsuchon, P. Evaluation of Combined Herbal Extract Dressing Materials Effect on Open Wounds in Pig Model. J. Med. Assoc. Thai. 2017, 100, 130.
  • Chusri, S.; Jittanon, W.; Maneenoon, K.; Voravuthikunchai, S. P. An Effective Antibiofilm Agent Against Pseudomonas aeruginosa Biofilm from Traditional Thai Herbal Recipes Used for Wound Treatments. Microb. Drug Resist. 2013, 19(5), 337–343. DOI: 10.1089/mdr.2012.0252.
  • Sirinthipaporn, A.; Jiraungkoorskul, W. Wound Healing Property Review of Siam Weed, Chromolaena Odorata. Pharmacogn. Rev. 2017, 11(21), 35. DOI: 10.4103/phrev.phrev_53_16.
  • Eze, F. N.; Jayeoye, T. J. Chromolaena Odorata (Siam Weed): A Natural Reservoir of Bioactive Compounds with Potent Anti-Fibrillogenic, Antioxidative, and Cytocompatible Properties. Biomed. Pharmacother. 2021, 141, 111811. DOI: 10.1016/j.biopha.2021.111811.
  • Vaisakh, M. N.; Pandey, A. The Invasive Weed with Healing Properties: A Review on Chromolaena Odorata. Int. J. 2012, 3(1), 80.
  • Afolabi, C. A.; EO, I.; IA, D. O. Phytochemical Constituents and Antioxidant Properties of Extracts from the Leaves of Chromolaena Odorata. Sci. Res. Essays. 2007, 2(6), 191–194.
  • Bamisaye, F. A.; Ajani, E. O.; Nurain, I. O.; Minari, J. B. Medicobotanical Investigation of Siam Weed (Chromolaena Odorata)) Used Among the “Ijebu” People of Ogun State, Nigeria. J. Med. Med. Sci. 2014, 5(1), 20–24.
  • Kim, S. Y.; Lee, Y. M. Drug Release Behavior of Electrical Responsive Poly (Vinyl Alcohol)/Poly (Acrylic Acid) IPN Hydrogels Under an Electric Stimulus. J. Appl. Polym. Sci. 1999, 74(7), 1752–1761. DOI: 10.1002/(SICI)1097-4628(19991114)74:7<1752:AID-APP18>3.0.CO;2-H.
  • Fantozzi, F.; Arturoni, E.; Barbucci, R. The Effects of the Electric Fields on Hydrogels to Achieve Antitumoral Drug Release. Bioelectrochemistry. 2010, 78(2), 191–195. DOI: 10.1016/j.bioelechem.2009.08.011.
  • Shraim, A. M.; Ahmed, T. A.; Rahman, M. M.; Hijji, Y. M. Determination of Total Flavonoid Content by Aluminum Chloride Assay: A Critical Evaluation. LWT. 2021, 150, 111932. DOI: 10.1016/j.lwt.2021.111932.
  • Tristantini, D.; Amalia, R. Quercetin Concentration and Total Flavonoid Content of Anti-Atherosclerotic Herbs Using Aluminum Chloride Colorimetric Assay. AIP Conf. Proc. 2019, 2193(1), 030012.
  • Niamlang, S.; Buranut, T.; Niansiri, A.; Sirivat, A. Controlled Aloin Release from Crosslinked Polyacrylamide Hydrogels: Effects of Mesh Size, Electric Field Strength and a Conductive Polymer. Materials. 2013, 6(10), 4787–4800. DOI: 10.3390/ma6104787.
  • Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.; Xu, F. Bioactuators Based on Stimulus-Responsive Hydrogels and Their Emerging Biomedical Applications. NPG Asia Mater. 2019, 11(1), 64. DOI: 10.1038/s41427-019-0165-3.
  • Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano. 2021, 15(8), 12687–12722. DOI: 10.1021/acsnano.1c04206.
  • Liang, Y.; Xu, H.; Li, Z.; Zhangji, A.; Guo, B. Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing. Nanomicro Lett. 2022, 14(1), 185. DOI: 10.1007/s40820-022-00928-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.