307
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activity induced non-monotonic aggregation in a mixture of chemically active and passive particles

, , &
Pages 237-250 | Received 12 Dec 2022, Accepted 26 Mar 2023, Published online: 30 Apr 2023

References

  • Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 1995, 75, 1226–1229. DOI: 10.1103/PhysRevLett.75.1226.
  • Toner, J.; Tu, Y. Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together. Phys. Rev. Lett. 1995, 75, 4326–4329. DOI: 10.1103/PhysRevLett.75.4326.
  • Aditi Simha, R.; Ramaswamy, S. Hydrodynamic Fluctuations and Instabilities in Ordered Suspensions of Self-Propelled Particles. Phys. Rev. Lett. 2002, 89, 058101. DOI: 10.1103/PhysRevLett.89.058101.
  • Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A. Hydrodynamics of Soft Active Matter. Rev. Mod. Phys. 2013, 85, 1143–1189. DOI: 10.1103/RevModPhys.85.1143.
  • Theers, M.; Westphal, E.; Qi, K.; Winkler, R. G.; Gompper, G. Clustering of Microswimmers: Interplay of Shape and Hydrodynamics. Soft Matter. 2018, 14, 8590–8603. DOI: 10.1039/C8SM01390J.
  • Berg, H. C.; Brown, D. A. Chemotaxis in Escherichia coli Analysed by Three-Dimensional Tracking. Nature. 1972, 239, 500–504. DOI: 10.1038/239500a0.
  • Adler, J. Chemotaxis in Bacteria. Annu. Rev. Biochem. 1975, 44, 341–356. DOI: 10.1146/annurev.bi.44.070175.002013.
  • Alon, U.; Surette, M. G.; Barkai, N.; Leibler, S. Robustness in Bacterial Chemotaxis. Nature. 1999, 397, 168–171. DOI: 10.1038/16483.
  • Dombrowski, C.; Cisneros, L.; Chatkaew, S.; Goldstein, R. E.; Kessler, J. O. Self-Concentration and Large-Scale Coherence in Bacterial Dynamics. Phys. Rev. Lett. 2004, 93, 098103. DOI: 10.1103/PhysRevLett.93.098103.
  • Eisenbach, M.; Tamada, A.; Omann, G.; Segall, J.; Firtel, R.; Meili, R.; Gutnick, D.; Varon, M.; Lengeler, J. W.; Murakami, F. Chemotaxis; London: World Scientific Publishing Company, 2004.
  • Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active Particles in Complex and Crowded Environments. Rev. Mod. Phys. 2016, 88. DOI: 10.1103/RevModPhys.88.045006.
  • Zöttl, A.; Stark, H. Emergent Behavior in Active Colloids. J. Phys. Condens. Matter. 2016, 28, 253001. DOI: 10.1088/0953-8984/28/25/253001.
  • Liebchen B, L. H. Synthetic Chemotaxis and Collective Behavior in Active Matter. Acc. Chem. Res. 2018, 51, 2982–2990. DOI: 10.1021/acs.accounts.8b00215.
  • Singh, D. P.; Choudhury, U.; Fischer, P.; Mark, A. G. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Adv. Mater. 2017, 29, 1701328. DOI: 10.1002/adma.201701328.
  • Zhou, C.; Zhang, H.; Tang, J.; Wang, W. Photochemically Powered Agcl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis. Langmuir. 2018, 34, 3289–3295. DOI: 10.1021/acs.langmuir.7b04301.
  • Li, J.; Singh, V. V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano. 2014, 8, 11118–11125. DOI: 10.1021/nn505029k.
  • Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. Phys. Rev. Lett. 2012, 108, 268303. DOI: 10.1103/PhysRevLett.108.268303.
  • Wang, C.; Wang, Q.; Dong, R.-F.; Cai, Y.-P. Dynamic Self-Assembly of Micro-Nanomotor. Inorg. Chem. Commun. 2018, 91, 8–15. DOI: 10.1016/j.inoche.2018.02.021.
  • Golestanian, R. Collective Behavior of Thermally Active Colloids. Phys. Rev. Lett. 2012, 108, 038303. DOI: 10.1103/PhysRevLett.108.038303.
  • Wu, X.; Xue, X.; Wang, J.; Liu, H. Phototropic Aggregation and Light-Guided Long-Distance Collective Transport of Colloidal Particles. Langmuir. 2020, 36, 6819–6827. DOI: 10.1021/acs.langmuir.0c01244.
  • Palacci, J.; Sacanna, S.; Abramian, A.; Barral, J.; Hanson, K.; Grosberg, A. Y.; Pine, D. J.; Chaikin, P. M. Artificial Rheotaxis. Sci. Adv. 2015, 1, e1400214. DOI: 10.1126/sciadv.1400214.
  • Thakur, S.; Kapral, R. Collective Dynamics of Self-Propelled Sphere-Dimer Motors. Phys. Rev. E. 2012, 85, 026121. DOI: 10.1103/PhysRevE.85.026121.
  • Buttinoni, I.; Bialké, J.; Kümmel, F.; Löwen, H.; Bechinger, C.; Speck, T. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles. Phys. Rev. Lett. 2013, 110, 238301. DOI: 10.1103/PhysRevLett.110.238301.
  • Chuphal, P.; Sahoo, S.; Thakur, S. Effect of Poiseuille Flow on the Dynamics of Active Vesicle. Soft. Mater. 2021, 19, 359–372. DOI: 10.1080/1539445X.2021.1937222.
  • Palacci, J.; Sacanna, S.; Steinberg, A. P.; Pine, D. J.; Chaikin, P. M. Living Crystals of Light-Activated Colloidal Surfers. Science. 2013, 339, 936–940. DOI: 10.1126/science.1230020.
  • Sahoo, S.; Singh, S. P.; Thakur, S. Role of Viscoelasticity on the Dynamics and Aggregation of Chemically Active Sphere-Dimers. Phys. Fluids. 2021, 33, 017120. DOI: 10.1063/5.0038743.
  • Ginot, F.; Theurkauff, I.; Detcheverry, F.; Ybert, C.; Cottin-Bizonne, C. Aggregation-Fragmentation and Individual Dynamics of Active Clusters. Nat. Commun. 2018, 9, 1–9. DOI: 10.1038/s41467-017-02625-7.
  • Niu, R.; Palberg, T.; Speck, T. Self-Assembly of Colloidal Molecules Due to Self-Generated Flow. Phys. Rev. Lett. 2017, 119, 028001. DOI: 10.1103/PhysRevLett.119.028001.
  • Angelani, L.; Maggi, C.; Bernardini, M. L.; Rizzo, A.; Di Leonardo, R. Effective Interactions Between Colloidal Particles Suspended in a Bath of Swimming Cells. Phys. Rev. Lett. 2011, 107, 138302. DOI: 10.1103/PhysRevLett.107.138302.
  • Stenhammar, J.; Wittkowski, R.; Marenduzzo, D.; Cates, M. E. Activity-Induced Phase Separation and Self-Assembly in Mixtures of Active and Passive Particles. Phys. Rev. Lett. 2015, 114, 018301. DOI: 10.1103/PhysRevLett.114.018301.
  • Grosberg, A. Y.; Joanny, J.-F. Nonequilibrium Statistical Mechanics of Mixtures of Particles in Contact with Different Thermostats. Phys. Rev. E. 2015, 92, 032118. DOI: 10.1103/PhysRevE.92.032118.
  • Wysocki, A.; Winkler, R. G.; Gompper, G. Propagating Interfaces in Mixtures of Active and Passive Brownian Particles. New J. Phys. 2016, 18, 123030. DOI: 10.1088/1367-2630/aa529d.
  • Niu, R.; Fischer, A.; Palberg, T.; Speck, T. Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles. ACS Nano. 2018, 12, 10932–10938. DOI: 10.1021/acsnano.8b04221.
  • Zhu, W.-J.; Li, T.-C.; Zhong, W.-R.; Ai, B.-Q. Rectification and Separation of Mixtures of Active and Passive Particles Driven by Temperature Difference. J. Chem. Phys. 2020, 152, 184903. DOI: 10.1063/5.0005013.
  • McCandlish, S. R.; Baskaran, A.; Hagan, M. F. Spontaneous Segregation of Self-Propelled Particles with Different Motilities. Soft Matter. 2012, 8, 2527–2534. DOI: 10.1039/c2sm06960a.
  • Weber, S. N.; Weber, C. A.; Frey, E. Binary Mixtures of Particles with Different Diffusivities Demix. Phys. Rev. Lett. 2016, 116, 058301. DOI: 10.1103/PhysRevLett.116.058301.
  • Wang, X.; Baraban, L.; Misko, V. R.; Nori, F.; Huang, T.; Cuniberti, G.; Fassbender, J.; Makarov, D. Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/Agcl Micromotors and Passive Beads. Small. 2018, 14, 1802537. DOI: 10.1002/smll.201802537.
  • Dolai, P.; Simha, A.; Mishra, S. Phase Separation in Binary Mixtures of Active and Passive Particles. Soft Matter. 2018, 14, 6137–6145. DOI: 10.1039/C8SM00222C.
  • Kolb, T.; Klotsa, D. Active Binary Mixtures of Fast and Slow Hard Spheres. Soft Matter. 2020, 16, 1967–1978. DOI: 10.1039/C9SM01799B.
  • Agrawal, N. K.; Mahapatra, P. S. Alignment-Mediated Segregation in an Active-Passive Mixture. Phys. Rev. E. 2021, 104, 044610. DOI: 10.1103/PhysRevE.104.044610.
  • Yu, T.; Chuphal, P.; Thakur, S.; Reigh, S. Y.; Singh, D. P.; Fischer, P. Chemical Micromotors Self-Assemble and Self-Propel by Spontaneous Symmetry Breaking. Chem. Commun. 2018, 54, 11933–11936. DOI: 10.1039/C8CC06467A.
  • Stürmer, J.; Seyrich, M.; Stark, H. Chemotaxis in a Binary Mixture of Active and Passive Particles. J. Chem. Phys. 2019, 150, 214901. DOI: 10.1063/1.5080543.
  • Hauke, F.; Löwen, H.; Liebchen, B. Clustering-Induced Velocity-Reversals of Active Colloids Mixed with Passive Particles. J. Chem. Phys. 2020, 152, 014903. DOI: 10.1063/1.5128641.
  • Furukawa, A.; Tanaka, H. Key Role of Hydrodynamic Interactions in Colloidal Gelation. Phys. Rev. Lett. 2010, 104, 245702. DOI: 10.1103/PhysRevLett.104.245702.
  • Radu, M.; Schilling, T. Solvent Hydrodynamics Speed Up Crystal Nucleation in Suspensions of Hard Spheres. EPL. 2014, 105, 26001. DOI: 10.1209/0295-5075/105/26001.
  • Matas-Navarro, R.; Golestanian, R.; Liverpool, T. B.; Fielding, S. M. Hydrodynamic Suppression of Phase Separation in Active Suspensions. Phys. Rev. E. 2014, 90, 032304. DOI: 10.1103/PhysRevE.90.032304.
  • Turetta, L.; Lattuada, M. The Role of Hydrodynamic Interactions on the Aggregation Kinetics of Sedimenting Colloidal Particles. Soft Matter. 2022, 18, 1715–1730. DOI: 10.1039/D1SM01637G.
  • Kapral, R. Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales. Adv. Chem. Phys. 2008, 140, 89.
  • Gompper, G.; Ihle, T.; Kroll, D.; Winkler, R. Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. Adv. Polym. Sci. 2009, 221, 1–87. DOI:10.1007/978-3-540-87706-6_1.
  • Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. DOI: 10.1063/1.1674820.
  • Rückner, G.; Kapral, R. Chemically Powered Nanodimers. Phys. Rev. Lett. 2007, 98, 150603. DOI: 10.1103/PhysRevLett.98.150603.
  • Reigh, S. Y.; Chuphal, P.; Thakur, S.; Kapral, R. Diffusiophoretically Induced Interactions Between Chemically Active and Inert Particles. Soft Matter. 2018, 14, 6043–6057. DOI: 10.1039/C8SM01102H.
  • Ihle, T.; Kroll, D. Stochastic Rotation Dynamics: A Galilean-Invariant Mesoscopic Model for Fluid Flow. Phys. Rev. E. 2001, 63, 020201. DOI: 10.1103/PhysRevE.63.020201.
  • Padding, J.; Louis, A. Hydrodynamic Interactions and Brownian Forces in Colloidal Suspensions: Coarse-Graining Over Time and Length Scales. Phys. Rev. E. 2006, 74, 031402. DOI: 10.1103/PhysRevE.74.031402.
  • Fily, Y.; Marchetti, M. C. Athermal Phase Separation of Self-Propelled Particles with No Alignment. Phys. Rev. Lett. 2012, 108, 235702. DOI: 10.1103/PhysRevLett.108.235702.
  • Stenhammar, J.; Tiribocchi, A.; Allen, R. J.; Marenduzzo, D.; Cates, M. E. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles. Phys. Rev. Lett. 2013, 111, 145702. DOI: 10.1103/PhysRevLett.111.145702.
  • Redner, G. S.; Hagan, M. F.; Baskaran, A. Structure and Dynamics of a Phase-Separating Active Colloidal Fluid. Phys. Rev. Lett. 2013, 110, 055701. DOI: 10.1103/PhysRevLett.110.055701.
  • Bera, A.; Sahoo, S.; Thakur, S.; Das, S. K. Active Particles in Explicit Solvent: Dynamics of Clustering for Alignment Interaction. Phys. Rev. E. 2022, 105, 014606. DOI: 10.1103/PhysRevE.105.014606.
  • Zumaya, M.; Larralde, H.; Aldana, M. Delay in the Dispersal of Flocks Moving in Unbounded Space Using Long-Range Interactions. Sci. Rep. 2018, 8, 1–9. DOI: 10.1038/s41598-018-34208-x.
  • Smirnov, B. The Properties of Fractal Clusters. Phys. Rep. 1990, 188, 1–78. DOI: 10.1016/0370-1573(90)90010-Y.
  • Carnevale, G.; Pomeau, Y.; Young, W. Statistics of Ballistic Agglomeration. Phys. Rev. Lett. 1990, 64, 2913. DOI: 10.1103/PhysRevLett.64.2913.
  • Midya, J.; Das, S. K. Kinetics of Vapor-Solid Phase Transitions: Structure, Growth, and Mechanism. Phys. Rev. Lett. 2017, 118, 165701. DOI: 10.1103/PhysRevLett.118.165701.
  • Whitmer, J. K.; Luijten, E. Influence of Hydrodynamics on Cluster Formation in Colloid- Polymer Mixtures. J. Phys. Chem B. 2011, 115, 7294–7300. DOI: 10.1021/jp111388m.
  • Royall, C. P.; Eggers, J.; Furukawa, A.; Tanaka, H. Probing Colloidal Gels at Multiple Length Scales: The Role of Hydrodynamics. Phys. Rev. Lett. 2015, 114, 258302. DOI: 10.1103/PhysRevLett.114.258302.
  • Blaschke, J.; Maurer, M.; Menon, K.; Zöttl, A.; Stark, H. Phase Separation and Coexistence of Hydrodynamically Interacting Microswimmers. Soft Matter. 2016, 12, 9821–9831. DOI: 10.1039/C6SM02042A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.