196
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gelation properties of amino-acid-based bis-urea compounds in organic solvents and in the presence of surfactants

& ORCID Icon
Pages 251-260 | Received 17 Feb 2023, Accepted 04 Jun 2023, Published online: 21 Jun 2023

References

  • Omar, J.; Ponsford, D.; Dreiss, C. A.; Lee, T. C.; Loh, X. J. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem. Asian. J. 2022, 17(9). DOI:10.1002/asia.202200081.
  • Wang, S.; Ong, P. J.; Liu, S.; Thitsartarn, W.; Tan, M. J.; Suwardi, A.; Zhu Q.; Loh X. J. Recent Advances in Host-Guest Supramolecular Hydrogels for Biomedical Applications. Chem. Asian. J. 2022, 17(18). DOI: 10.1002/asia.202200608.
  • Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem. Rev. 2022, 122(6), 5604–5640. DOI: 10.1021/acs.chemrev.1c00815.
  • Zheng, J.; Song, X.; Yang, Z.; Yin, C.; Luo, W.; Yin, C.; Ni, Y.; Wang, Y.; Zhang, Y. Self-Assembly Hydrogels of Therapeutic Agents for Local Drug Delivery. J. Control Release. 2022, 350, 898–921. DOI: 10.1016/j.jconrel.2022.09.001.
  • Pinteala, M.; Abadie, M. J. M.; Rusu, R. D. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. Materials. 2020, 13(15), 3343. DOI: 10.3390/ma13153343.
  • Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115(24), 13165–13307. DOI: 10.1021/acs.chemrev.5b00299.
  • Genio, F. A. F.; Paderes, M. C. Functional Supramolecular Gels Comprised of Bis-Urea Compounds and Cosmetic Solvents. ChemSelect. 2021, 6(31), 7906–7911. DOI: 10.1002/slct.202102367.
  • Paderes, M. C.; James, C.; Jamieson, S. A.; Mai, A. H.; Limon, J. H.; Dolatkhani, M.; Fernandez-Prieto, S.; De Borggraeve, W. M.; Fratini, E. Tuning the Properties of Polyether Alkyl Urea Derivatives as Rheology Modifiers in Cosmetic Solvents. ACS Appl. Polym. Mater. 2020, 2(7), 2902–2909. DOI: 10.1021/acsapm.0c00416.
  • Paderes, M.; Ahirwal, D.; Fernández Prieto, S. Natural and Synthetic Polymers in Fabric and Home Care Applications. Phys. Sci. Rev. 2017, 2(9), 2. DOI: 10.1515/psr-2017-0021.
  • Fernandez-Prieto, S.; Dolatkhani, M.; De Borggraeve, W. M.; Paderes, M. C.; et al., inventors. The Procter & Gamble Company, Assignee. Hydrophobically modified urea ethers as structurants for hydrophobic systems patent US20170258694. Mar 13, 2017.
  • Williams, G. T.; Haynes, C. J. E.; Fares, M.; Caltagirone, C.; Hiscock, J. R.; Gale, P. A. Advances in Applied Supramolecular Technologies. Chem. Soc. Rev. 2021, 50(4), 2737–2763. DOI: 10.1039/D0CS00948B.
  • Zheng, Y. J.; Loh, X. J. Natural Rheological Modifiers for Personal Care. Polym. Adv. Technol. 2016, 27(12), 1664–1679. DOI: 10.1002/pat.3822.
  • Chivers, P. R. A.; Smith, D. K. Shaping and Structuring Supramolecular Gels. Nat. Rev. Mater. 2019, 4(7), 463–478. DOI: 10.1038/s41578-019-0111-6.
  • Christoff-Tempesta, T.; Lew, A. J.; Ortony, J. H. Beyond Covalent Crosslinks: Applications of Supramolecular Gels. Gels. 2018, 4(2), 40. DOI: 10.3390/gels4020040.
  • Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Self-Assembled Gelators for Organic Electronics. Angew. Chem. Int. Ed. 2012, 51(8), 1766–1776. DOI: 10.1002/anie.201106767.
  • Wang, Q.; Wu, H.; Gao, A.; Ge, X.; Chang, X.; Cao, X. Bis-Naphthalimide-Based Supramolecular Self-Assembly System for Selective and Colorimetric Detection of Oxalyl Chloride and Phosgene in Solution and Gas Phase. Chinese Chem. Lett. 2023, 34(6), 107644. DOI: 10.1016/j.cclet.2022.06.067.
  • Gao, A.; Wang, Q.; Wu, H.; Zhao, J.-W.; Cao, X. Research Progress on AIE Cyanostilbene-Based Self-Assembly Gels: Design, Regulation and Applications. Coord. Chem. Rev. 2022, 471, 214753. DOI: 10.1016/j.ccr.2022.214753.
  • Cao, X.; Gao, A.; Hou, J.-T.; Yi, T. Fluorescent Supramolecular Self-Assembly Gels and Their Application as Sensors: A Review. Coordination Chem. Rev. 2021, 434, 213792. DOI: 10.1016/j.ccr.2021.213792.
  • Lyu, F.; Yu, S.; Li, M.; Wang, Z.; Nan, B.; Wu, S.; Cao, L.; Sun, Z.; Yang, M.; Wang, W., et al. Supramolecular Hydrogel Directed Self-Assembly of C- and N-Doped Hollow CuO as High-Performance Anode Materials for Li-Ion Batteries. Chem. Commun. 2017, 53(13), 2138–2141.
  • Shi, Y.; Zhang, J.; Pan, L.; Shi, Y.; Yu, G. Energy Gels: A Bio-Inspired Material Platform for Advanced Energy Applications. Nano Today. 2016, 11(6), 738–762. DOI: 10.1016/j.nantod.2016.10.002.
  • Brizard, A. M.; van Esch, J. H. Self-Assembly Approaches for the Construction of Cell Architecture Mimics. Soft Matter. 2009, 5(7), 1320–1327. DOI: 10.1039/b812388h.
  • van Esch, J. H. We Can Design Molecular Gelators, but Do We Understand Them? Langmuir. 2009, 25(15), 8392–8394. DOI: 10.1021/la901720a.
  • van Esch, J. H. More Than the Sum of Its Parts. Nature. 2010, 466(7303), 193–194. DOI: 10.1038/466193a.
  • Loos, J. N.; D’Acierno, F.; Vijay Mody, U.; MacLachlan, M. J. Manipulating the Self-Assembly of Multicomponent Low Molecular Weight Gelators (LMWGs) Through Molecular Design. ChemPluschem. 2022, 87(4). DOI: 10.1002/cplu.202200026.
  • Kubota, R.; Nagao, K.; Tanaka, W.; Matsumura, R.; Aoyama, T.; Urayama, K.; Hamachi, I. Control of Seed Formation Allows Two Distinct Self-Sorting Patterns of Supramolecular Nanofibers. Nat. Commun. 2020, 11(1), 4100. DOI: 10.1038/s41467-020-17984-x.
  • Wang, Y.; Lovrak, M.; Liu, Q.; Maity, C.; le Sage, V. A. A.; Guo, X.; Eelkema, R.; van Esch, J. H. Hierarchically Compartmentalized Supramolecular Gels Through Multilevel Self-Sorting. J. Am. Chem. Soc. 2019, 141(7), 2847–2851. DOI: 10.1021/jacs.8b09596.
  • Boekhoven, J.; Brizard, A. M.; Stuart, M. C. A.; Florusse, L.; Raffy, G.; Del Guerzo, A.; van Esch, J. H. Bio-Inspired Supramolecular Materials by Orthogonal Self-Assembly of Hydrogelators and Phospholipids. Chem. Sci. 2016, 7(9), 6021–6031. DOI: 10.1039/C6SC01021K.
  • Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. C., et al. Chemically Programmed Self-Sorting of Gelator Networks. Nat. Commun. 2013, 4(1), 1480.
  • Moffat, J. R.; Smith, D. K. Controlled Self-Sorting in the Assembly of ‘Multi-gelator’ Gels. Chem. Commun. 2009, 3(3), 316–318. DOI: 10.1039/B818058J.
  • Xu, Y.; Laupheimer, M.; Preisig, N.; Sottmann, T.; Schmidt, C.; Stubenrauch, C. Gelled Lyotropic Liquid Crystals. Langmuir. 2015, 31(31), 8589–8598. DOI: 10.1021/acs.langmuir.5b01992.
  • Kato, T.; Mizoshita, N.; Moriyama, M.; Kitamura, T. Gelation of Liquid Crystals with Self-Assembled Fibers. In Low Molecular Mass Gelator. Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2005; Vol. 256, pp 219–236. DOI: 10.1007/b107176.
  • Kato, T. Self-Assembly of Phase-Segregated Liquid Crystal Structures. Science. 2002, 295(5564), 2414–2418. DOI: 10.1126/science.1070967-a.
  • Laupheimer, M.; Jovic, K.; Antunes, F. E.; da Graça Martins Miguel, M.; Stubenrauch, C. Studying Orthogonal Self-Assembled Systems: Phase Behaviour and Rheology of Gelled Microemulsions. Soft Matter. 2013, 9(13), 3661–3670. DOI: 10.1039/c3sm27883b.
  • Wei, P.; Yan, X.; Huang, F. Supramolecular Polymers Constructed by Orthogonal Self-Assembly Based on Host–Guest and Metal–Ligand Interactions [10.1039/C4CS00327F]. Chem. Soc. Rev. 2015, 44(3), 815–832. DOI: 10.1039/C4CS00327F.
  • Xiao, T.; Sun, X.-Q.; Wang, L. Supramolecular Functional Complexes Constructed by Orthogonal Self-Assembly. In Handbook of Macrocyclic Supramolecular Assembly; Liu, Y., Chen, Y., and Zhang, H.-Y., Eds.; Springer Singapore: Singapore, 2019; pp 1–28.
  • Brizard, A. M.; Stuart, M. C. A.; van Esch, J. H. Self-Assembled Interpenetrating Networks by Orthogonal Self Assembly of Surfactants and Hydrogelators. Faraday Discus. 2009, 143, 345–357. DOI: 10.1039/b903806j.
  • Brizard, A.; Stuart, M.; van Bommel, K.; Friggeri, A.; de Jong, M.; van Esch, J. Preparation of Nanostructures by Orthogonal Self-Assembly of Hydrogelators and Surfactants. Angew. Chem. Int. Ed. 2008, 47(11), 2063–2066. DOI: 10.1002/anie.200704609.
  • Heeres, A.; van der Pol, C.; Stuart, M.; Friggeri, A.; Feringa, B. L.; van Esch, J. Orthogonal Self-Assembly of Low Molecular Weight Hydrogelators and Surfactants. J. Am. Chem. Soc. 2003, 125(47), 14252–14253. DOI: 10.1021/ja036954h.
  • Kronberg, B.; Holmberg, K.; Lindman, B. Surfactant Self-Assembly. Surface Chemistry of Surfactants and Polymers; John Wiley & Sons, Ltd, 2014; pp 75–94.
  • Ghosh, S.; Ray, A.; Pramanik, N. Self-Assembly of Surfactants: An Overview on General Aspects of Amphiphiles. Biophys. Chem. 2020, 265, 106429. DOI: 10.1016/j.bpc.2020.106429.
  • Adams, D. J. Personal Perspective on Understanding Low Molecular Weight Gels. J. Am. Chem. Soc. 2022, 144(25), 11047–11053. DOI: 10.1021/jacs.2c02096.
  • Draper, E. R.; Adams, D. J. Low-Molecular-Weight Gels: The State of the Art. Chem. 2017, 3(3), 390–410. DOI: 10.1016/j.chempr.2017.07.012.
  • de Loos, M.; Feringa, B. L.; van Esch, J. H. Design and Application of Self-Assembled Low Molecular Weight Hydrogels. Eur. J. Org. Chem. 2005, 2005(17), 3615–3631. DOI: 10.1002/ejoc.200400723.
  • Nebot, V. J.; Escuder, B.; Miravet, J. F.; Smets, J.; Fernández-Prieto, S. Interplay of Molecular Hydrogelators and SDS Affords Responsive Soft Matter Systems with Tunable Properties. Langmuir. 2013, 29(30), 9544–9550. DOI: 10.1021/la401653b.
  • Jinno, Y.; Yamanaka, M. Ionic Surfactants Induce Amphiphilic Tris(urea) Hydrogel Formation. Chem. Asian. J. 2012, 7(8), 1768–1771. DOI: 10.1002/asia.201200152.
  • Sánchez Muñoz, S.; Rocha Balbino, T.; Mier Alba, E.; Gonçalves Barbosa, F.; Tonet de Pier, F.; Lazuroz Moura de Almeida, A.; Helena Balan Zilla, A.; Antonio Fernandes Antunes, F.; Terán Hilares, R.; Balagurusamy, N., et al. Surfactants in Biorefineries: Role, Challenges & Perspectives. Bioresour. Technol. 2022, 345, 126477. DOI: 10.1016/j.biortech.2021.126477.
  • Das, B.; Kumar, B.; Begum, W.; Bhattarai, A.; Mondal, M. H.; Saha, B. Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure Due to COVID-19. Chem. Africa. 2022, 5(3), 459–480. DOI: 10.1007/s42250-022-00345-0.
  • Bondi, C. A. M.; Marks, J. L.; Wroblewski, L. B.; Raatikainen, H. S.; Lenox, S. R.; Gebhardt, K. E. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ. Health Insights. 2015, 9, EHI.S31765. DOI: 10.4137/EHI.S31765.
  • Geng, Y.; Huang, J.; Tan, B.; Xu, Y.; Li, P.; Xu, J. Efficient Synthesis of Dodecylbenzene Sulfonic Acid in Microreaction Systems. Chem. Eng. Process. 2020, 149, 107858. DOI: 10.1016/j.cep.2020.107858.
  • Huang, J.-Q.; Hu, C.-C.; Chiu, T.-C. Determination of Seven Preservatives in Cosmetic Products by Micellar Electrokinetic Chromatography. Int. J. Cosmet Sci. 2013, 35(4), 346–353. DOI: 10.1111/ics.12040.
  • Morandat, S.; El Kirat, K. Solubilization of Supported Lipid Membranes by Octyl Glucoside Observed by Time-Lapse Atomic Force Microscopy. Colloids Surf. B Biointerfaces. 2007, 55(2), 179–184. DOI: 10.1016/j.colsurfb.2006.11.039.
  • Yokoya, M.; Kimura, S.; Yamanaka, M. Urea Derivatives as Functional Molecules: Supramolecular Capsules, Supramolecular Polymers, Supramolecular Gels, Artificial Hosts, and Catalysts. Chem. Eur. J. 2021, 27, 5601–5614. DOI: 10.1002/chem.202004367.
  • Yamanaka, M. Urea Derivatives as Low-Molecular-Weight Gelators. J. Incl. Phenom. Macrocyc. Chem. 2013, 77(1), 33–48. DOI: 10.1007/s10847-013-0299-9.
  • Das, T.; Häring, M.; Haldar, D.; Díaz Díaz, D. Phenylalanine and Derivatives as Versatile Low-Molecular-Weight Gelators: Design, Structure and Tailored Function. Biomater. Sci. 2018, 6(1), 38–59. DOI: 10.1039/C7BM00882A.
  • Kamashita, T.; Nagata, H. Y. T.; Ajioka, M., inventor. Mitsui Toatsu Chemicals Inc, Assignee. Method for Extracting an Amino Acid Ester from a Hydrous Solution of a Mineral Acid Salt Thereof Patent US5374765A. 1993. Dec 20, 1994.
  • Rutgeerts, L. A. J.; Soultan, A. H.; Subramani, R.; Toprakhisar, B.; Ramon, H.; Paderes, M. C.; De Borggraeve, W. M.; Patterson, J. Robust Scalable Synthesis of a Bis-Urea Derivative Forming Thixotropic and Cytocompatible Supramolecular Hydrogels. Chem. Commun. 2019, 55(51), 7323–7326. DOI: 10.1039/C9CC02927C.
  • van Esch, J. H.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L. Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chem. Eur. J. 1999, 5(3), 937–950. DOI: 10.1002/(SICI)1521-3765(19990301)5:3<937:AID-CHEM937>3.0.CO;2-0.
  • Isare, B.; Pembouong, G.; Boué, F.; Bouteiller, L. Conformational Control of Hydrogen-Bonded Aromatic Bis-Ureas. Langmuir. 2012, 28(19), 7535–7541. DOI: 10.1021/la300887p.
  • Pandurangan, K.; Kitchen, J. A.; Blasco, S.; Paradisi, F.; Gunnlaugsson, T. Supramolecular Pyridyl Urea Gels as Soft Matter with Antibacterial Properties Against MRSA and/or E. coli. Chem. Commun. 2014, 50(74), 10819–10822. DOI: 10.1039/C4CC04028G.
  • Yu, Q.; Li, D.; Cai, M.; Zhou, F.; Liu, W. Supramolecular Gel Lubricants Based on Amino Acid Derivative Gelators. Tribol. Lett. 2016, 61(2), 16. DOI: 10.1007/s11249-015-0634-y.
  • Raghavan, S. R. Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks. Langmuir. 2009, 25(15), 8382–8385. DOI: 10.1021/la901513w.
  • Mezger, T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 2nd ed. Vincentz Net, 2020.
  • Schramm, G. A Practical Approach to Rheology and Rheometry, 2nd ed.; Gebrueder HAAKE GmbH: Karlsruhe, Germany, 2000.
  • Noro, A.; Hayashi, M.; Matsushita, Y. Design and Properties of Supramolecular Polymer Gels. Soft Matter. 2012, 8(24), 6416–6429. DOI: 10.1039/c2sm25144b.
  • Agrawal, N. R.; Yue, X.; Raghavan, S. R. The Unusual Rheology of Wormlike Micelles in Glycerol: Comparable Timescales for Chain Reptation and Segmental Relaxation. Langmuir. 2020, 36(23), 6370–6377. DOI: 10.1021/acs.langmuir.0c00489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.