139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal conductivity of hydrogenated h-BN nanosheets: a reactive force field study

ORCID Icon
Pages 271-279 | Received 28 Apr 2023, Accepted 30 Jun 2023, Published online: 06 Jul 2023

References

  • An, L.; Zhao, T.; Li, Y. Carbon-Neutral Sustainable Energy Technology: Direct Ethanol Fuel Cells. Renewable Sustainable Energy Rev. 2015, 50, 1462–1468. DOI: 10.1016/j.rser.2015.05.074.
  • Su, L.; Jia, W.; Li, C. M.; Lei, Y. Mechanisms for Enhanced Performance of Platinum‐Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. ChemSuschem. 2014, 7(2), 361–378. DOI: 10.1002/cssc.201300823.
  • Molkov, V.; Kashkarov, S. Blast Wave from a High-Pressure Gas Tank Rupture in a Fire: Stand-Alone and Under-Vehicle Hydrogen Tanks. Int. J. Hydrogen Energy. 2015, 40(36), 12581–12603. DOI: 10.1016/j.ijhydene.2015.07.001.
  • Tozzini, V.; Pellegrini, V. Prospects for Hydrogen Storage in Graphene. Phys. Chem. Chem. Phys. 2013, 15(1), 80–89. DOI: 10.1039/C2CP42538F.
  • Shiraz, H. G.; Tavakoli, O. Investigation of Graphene-Based Systems for Hydrogen Storage. Renewable Sustainable Energy Rev. 2017, 74, 104–109. DOI: 10.1016/j.rser.2017.02.052.
  • Fan, X.; Wang, L. Graphene with Outstanding Anti-Irradiation Capacity as Multialkylated Cyclopentanes Additive Toward Space Application. Sci. Rep. 2015, 5(1), 1–12. DOI: 10.1038/srep12734.
  • Han, R.; Liu, F.; Wang, X.; Huang, M.; Li, W.; Yamauchi, Y.; Sun, X.; Huang, Z. Functionalised Hexagonal Boron Nitride for Energy Conversion and Storage. J. Mater. Chem. A. 2020, 8(29), 14384–14399. DOI: 10.1039/D0TA05008C.
  • Chettri, B.; Patra, P.; Hieu, N. N.; Rai, D. P. Hexagonal Boron Nitride (h-BN) Nanosheet as a Potential Hydrogen Adsorption Material: A Density Functional Theory (DFT) Study. Surf. Interfaces. 2021, 24, 101043. DOI: 10.1016/j.surfin.2021.101043.
  • Kundu, A.; Trivedi, R.; Garg, N.; Chakraborty, B. Novel Permeable Material “Yttrium Decorated Zeolite Templated Carbon” for Hydrogen Storage: Perspectives from Density Functional Theory. Int. J. Hydrogen Energy. 2022, 47(66), 28573–28584. DOI: 10.1016/j.ijhydene.2022.06.159.
  • Rakesh, A. K.; Kumar, R.; Govindan, A.; Kharwar, S.; Singh, S. DFT Investigation of Hydrogenated Cove-Edged Boron Nitride Nanoribbons for Resonant Tunneling Diodes Application. Solid State Commun. 2023, 365, 115119. DOI: 10.1016/j.ssc.2023.115119.
  • Tang, S.; Cao, Z. Structural and Electronic Properties of the Fully Hydrogenated Boron Nitride Sheets and Nanoribbons: Insight from First-Principles Calculations. Chem. Phys. Lett. 2010, 488(1–3), 67–72. DOI: 10.1016/j.cplett.2010.01.073.
  • Carrington, K. R.; Barcelo, S.; Karkamkar, A.; Purewal J.; Ma S.;Zhou H. C.; Dantzer P.; Ott K.; Burrell T.; Semeslberger T. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials. Effici. Renewable Energy, US Department Energy-Office Energy. 2012, 1–579.
  • Li, Y.; Zhai, Y.; Ma, M.; Xuan, Z.; Wang, H. Using Molecular Dynamics Simulations to Investigate the Effect of the Interfacial Nanolayer Structure on Enhancing the Viscosity and Thermal Conductivity of Nanofluids. Int. Commun. Heat Mass Transfer. 2021, 122, 105181. DOI: 10.1016/j.icheatmasstransfer.2021.105181.
  • Yousefi, F.; Khoeini, F.; Rajabpour, A. Thermal Conductivity and Thermal Rectification of Nanoporous Graphene: A Molecular Dynamics Simulation. Int. J. Heat Mass Transfer. 2020, 146, 118884. DOI: 10.1016/j.ijheatmasstransfer.2019.118884.
  • Guan, H.; Su, Q.; Wang, R.; Huang, L.; Shao, C.; Zhu, Z. Why Can Hybrid Nanofluid Improve Thermal Conductivity More? A Molecular Dynamics Simulation. J. Mol. Liq. 2023, 372, 121178. DOI: 10.1016/j.molliq.2022.121178.
  • Chen, W.; Zhai, Y.; Guo, W.; Shen, X.; Wang, H. A Molecular Dynamic Simulation of the Influence of Linear Aggregations on Heat Flux Direction on the Thermal Conductivity of Nanofluids. Powder Technol. 2023, 413, 118052. DOI: 10.1016/j.powtec.2022.118052.
  • Kumar, A.; Sharma, K.; Dixit, A. R. A Review on the Mechanical and Thermal Properties of Graphene and Graphene-Based Polymer Nanocomposites: Understanding of Modelling and MD Simulation. Mol. Simul. 2020, 46(2), 136–154. DOI: 10.1080/08927022.2019.1680844.
  • Wu, X.; Han, Q. Thermal Conductivity of Monolayer Hexagonal Boron Nitride: From Defective to Amorphous. Comput. Mater. Sci. 2020, 184, 109938. DOI: 10.1016/j.commatsci.2020.109938.
  • Pei, Q.-X.; Sha, Z.-D.; Zhang, Y.-W. A Theoretical Analysis of the Thermal Conductivity of Hydrogenated Graphene. Carbon. 2011, 49(14), 4752–4759. DOI: 10.1016/j.carbon.2011.06.083.
  • Shavikloo, M.; Kimiagar, S. Thermal Rectification in Partially Hydrogenated Graphene with Grain Boundary, a Non-Equilibrium Molecular Dynamics Study. Comput. Mater. Sci. 2017, 139, 330–334. DOI: 10.1016/j.commatsci.2017.08.024.
  • Li, M.; Deng, T.; Zheng, B.; Zhang, Y.; Liao, Y.; Zhou, H. Effect of Defects on the Mechanical and Thermal Properties of Graphene. Nanomaterials. 2019, 9(3), 347. DOI: 10.3390/nano9030347.
  • Yang, Y.; Cao, J.; Wei, N.; Meng, D.; Wang, L.; Ren, G.; Yan, R.; Zhang, N. Thermal Conductivity of Defective Graphene Oxide: A Molecular Dynamic Study. Molecules. 2019, 24(6), 1103. DOI: 10.3390/molecules24061103.
  • Yang, P.; Li, X.; Zhao, Y.; Yang, H.; Wang, S. Effect of Triangular Vacancy Defect on Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons. Phys. Lett. A. 2013, 377(34–36), 2141–2146. DOI: 10.1016/j.physleta.2013.05.058.
  • Yang, N.; Zeng, X.; Lu, J.; Sun, R.; Wong, C.-P. Effect of Chemical Functionalization on the Thermal Conductivity of 2D Hexagonal Boron Nitride. Appl. Phys. Lett. 2018, 113(17), 171904. DOI: 10.1063/1.5050293.
  • Ng, T. Y.; Yeo, J. J.; Liu, Z. A Molecular Dynamics Study of the Thermal Conductivity of Graphene Nanoribbons Containing Dispersed Stone–Thrower–Wales Defects. Carbon. 2012, 50(13), 4887–4893. DOI: 10.1016/j.carbon.2012.06.017.
  • Yang, X.; Wu, S.; Xu, J.; Cao, B.; To, A. C. Spurious Heat Conduction Behavior of Finite-Size Graphene Nanoribbon Under Extreme Uniaxial Strain Caused by the AIREBO Potential. Phys E. 2018, 96, 46–53. DOI: 10.1016/j.physe.2017.10.006.
  • Dhaliwal, G.; Nair, P. B.; Singh, C. V. Uncertainty Analysis and Estimation of Robust AIREBO Parameters for Graphene. Carbon. 2019, 142, 300–310. DOI: 10.1016/j.carbon.2018.10.020.
  • Si, C.; Wang, X.-D.; Fan, Z.; Feng, Z.-H.; Cao, B.-Y. Impacts of Potential Models on Calculating the Thermal Conductivity of Graphene Using Non-Equilibrium Molecular Dynamics Simulations. Int. J. Heat Mass Transfer. 2017, 107, 450–460. DOI: 10.1016/j.ijheatmasstransfer.2016.11.065.
  • Zhang, X.; Chen, Z.; Chen, H.; Xu, L. Comparative Studies of Thermal Conductivity for Bilayer Graphene with Different Potential Functions in Molecular Dynamic Simulations. Results Phys. 2021, 22, 103894. DOI: 10.1016/j.rinp.2021.103894.
  • Lindsay, L.; Broido, D. Enhanced Thermal Conductivity and Isotope Effect in Single-Layer Hexagonal Boron Nitride. Phys. Rev. B. 2011, 84(15), 155421. DOI: 10.1103/PhysRevB.84.155421.
  • Zhang, Y.-Y.; Pei, Q.-X.; Liu, H.-Y.; Wei, N. Thermal Conductivity of a h-BCN Monolayer. Phys. Chem. Chem. Phys. 2017, 19(40), 27326–27331. DOI: 10.1039/C7CP04982J.
  • Dethan, J. F. N.; Yeo, J.; Rhamdhani, M. A.; Swamy, V. Thermal Conductivities of Hydrogen Encapsulated Boron Nitride and Hybrid Boron Nitride–Carbon Nanotubes Using Molecular Dynamics Simulations. Mater. Today Commun. 2022, 32, 103947. DOI: 10.1016/j.mtcomm.2022.103947.
  • Dethan, J. F. N.; Swamy, V. Tensile Properties of Hydrogenated Hybrid Graphene–Hexagonal Boron Nitride Nanosheets: A Reactive Force Field Study. Mol. Simul. 2020, 46(15), 1220–1229. DOI: 10.1080/08927022.2020.1810854.
  • Kumar, R.; Mertiny, P.; Parashar, A. Effects of Different Hydrogenation Regimes on Mechanical Properties of h-BN: A Reactive Force Field Study. J. Phys. Chem. C. 2016, 120(38), 21932–21938. DOI: 10.1021/acs.jpcc.6b05812.
  • Kumar, R.; Parashar, A.; Mertiny, P. Displacement Thresholds and Knock-On Cross Sections for Hydrogenated h-BN Monolayers. Comput. Mater. Sci. 2018, 142, 82–88. DOI: 10.1016/j.commatsci.2017.10.001.
  • Tabarraei, A. Thermal Conductivity of Monolayer Hexagonal Boron Nitride Nanoribbons. Comput. Mater. Sci. 2015, 108, 66–71. DOI: 10.1016/j.commatsci.2015.06.006.
  • Dethan, J. F. N. Mechanical Properties and Thermal Conductivity of Newly Introduced Graphene-Like Borophanes: A Reactive Molecular Dynamics Study. Phys. Chem. Chem. Phys. 2021, 23(31), 17009–17017. DOI: 10.1039/D1CP01831K.
  • Wang, J.; Mu, X.; Wang, X.; Wang, N.; Ma, F.; Liang, W.; Sun, M. The Thermal and Thermoelectric Properties of In-Plane C-BN Hybrid Structures and Graphene/h-BN van der Waals Heterostructures. Mater. Today Phys. 2018, 5, 29–57. DOI: 10.1016/j.mtphys.2018.05.006.
  • Liu, F.; Zou, R.; Hu, N.; Ning, H.; Yan, C.; Liu, Y.; Wu, L.; Mo, F.; Fu, S. Enhancement of Thermal Energy Transport Across the Graphene/h-BN Heterostructure Interface. Nanoscale. 2019, 11(9), 4067–4072. DOI: 10.1039/C8NR10468A.
  • Liu, F.; Gong, Y.; Zou, R.; Ning, H.; Hu, N.; Liu, Y.; Wu, L.; Mo, F.; Fu, S.; Yan, C., et al. Strain Effects on the Interfacial Thermal Conductance of Graphene/h-BN Heterostructure. Nano Mater. Sci. 2022, 4(3), 227–234.
  • Verma, A.; Zhang, W.; Van Duin, A. C. T. ReaxFf Reactive Molecular Dynamics Simulations to Study the Interfacial Dynamics Between Defective h-BN Nanosheets and Water Nanodroplets. Phys. Chem. Chem. Phys. 2021, 23(18), 10822–10834. DOI: 10.1039/D1CP00546D.
  • Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; In ’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D., et al. LAMMPS-A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. DOI: 10.1016/j.cpc.2021.108171.
  • Esrafili, M. D.; Asadollahi, S. A Single Pd Atom Stabilized on Boron‐Vacancy of h‐BN Nanosheet: A Promising Catalyst for CO Oxidation. ChemistrySelect. 2018, 3(32), 9181–9188. DOI: 10.1002/slct.201801848.
  • Chaurasia, A.; Parashar, A. Experimental and Atomistic Insight on the Thermal Transport Properties of h-BN/High Density Polyethylene Nanocomposite. Int. J. Heat Mass Transfer. 2021, 170, 121039. DOI: 10.1016/j.ijheatmasstransfer.2021.121039.
  • Wu, S.; Chen, Q.; Chen, D.; Peng, D.; Ma, Y. Multiscale Study of Thermal Conductivity of Boron Nitride Nanosheets/Paraffin Thermal Energy Storage Materials. J. Energy Storage. 2021, 41, 102931. DOI: 10.1016/j.est.2021.102931.
  • Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H., et al. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Science Advances. 2019, 5(6), eaav0129.
  • Yan, J.; Tong, L.; Luo, R.; Gao, D. Thickness of Monolayer h-BN Nanosheet and Edge Effect on Free Vibration Behaviors. Int. J. Mech. Sci. 2019, 164, 105163. DOI: 10.1016/j.ijmecsci.2019.105163.
  • Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Exfoliation of Hexagonal Boron Nitride (h-BN) in Liquide Phase by Ion Intercalation. Nanomaterials. 2018, 8(9), 716. DOI: 10.3390/nano8090716.
  • Güler, Ö.; Güler, S. H. Production of Graphene–Boron Nitride Hybrid Nanosheets by Liquid-Phase Exfoliation. Optik. 2016, 127(11), 4630–4634. DOI: 10.1016/j.ijleo.2016.02.033.
  • Barbarino, G.; Melis, C.; Colombo, L. Effect of Hydrogenation on Graphene Thermal Transport. Carbon. 2014, 80, 167–173. DOI: 10.1016/j.carbon.2014.08.052.
  • Wu, X.; Varshney, V.; Lee, J.; Zhang, T.; Wohlwend, J. L.; Roy, A. K.; Luo, T. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity. Nano Lett. 2016, 16(6), 3925–3935. DOI: 10.1021/acs.nanolett.6b01536.
  • Liu, B.; Reddy, C.; Jiang, J.; Baimova, J. A.; Dmitriev, S. V.; Nazarov, A. A.; Zhou, K. Morphology and In-Plane Thermal Conductivity of Hybrid Graphene Sheets. Appl. Phys. Lett. 2012, 101(21), 211909. DOI: 10.1063/1.4767388.
  • Khan, A. I.; Navid, I. A.; Noshin, M.; Uddin, H.; Hossain, F.; Subrina, S. Equilibrium Molecular Dynamics (MD) Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials. Electronics. 2015, 4(4), 1109–1124. DOI: 10.3390/electronics4041109.
  • Shahil, K. M. F.; Balandin, A. A. Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 2012, 152(15), 1331–1340. DOI: 10.1016/j.ssc.2012.04.034.
  • Kınacı, A.; Haskins, J. B.; Sevik, C.; Çağın, T. Thermal Conductivity of BN-C Nanostructures. Phys. Rev. B. 2012, 86(11), 115410. DOI: 10.1103/PhysRevB.86.115410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.