187
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Adhesive, self-healing polydopamine/reduced graphene oxide composite hydrogel for self-powered application

ORCID Icon, , , , &
Pages 119-128 | Received 20 Oct 2022, Accepted 18 Feb 2024, Published online: 26 Feb 2024

References

  • Liu, Y.; Wang, L.; Zhao, L.; Yu, X.; Zi, Y. Recent Progress on Flexible Nanogenerators Toward Self-Powered Systems. Info. Mat. 2020, 2(2), 318–340. DOI: 10.1002/inf2.12079.
  • Zhou, D.; Wang, N.; Yang, T.; Wang, L.; Cao, X.; Wang, Z.-L. A Piezoelectric Nanogenerator Promotes Highly Stretchable and Self-Chargeable Supercapacitors. Mater. Horiz. 2020, 7(8), 2158–2167. DOI: 10.1039/D0MH00610F.
  • Yaqoob, U.; Uddin, A. S. M. I.; Chung, G. S. A Novel Tri-Layer Flexible Piezoelectric Nanogenerator Based on Surface-Modified Graphene and PVDF-BaTiO3 Nanocomposites. Appl. Surf. Sci. 2017, 405, 420–426. DOI: 10.1016/j.apsusc.2017.01.314.
  • Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J.; Kim, J. H.; Kim, S. W. Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator. ACS Nano. 2015, 9(4), 3501–3509. DOI: 10.1021/nn507221f.
  • Li, S.; Wang, J.; Peng, W.; Lin, L.; Zi, Y.; Wang, S.; Zhang, G.; Wang, Z.-L. Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. Adv. Energy Mater. 2017, 7(13), 1602832. DOI: 10.1002/aenm.201602832.
  • Guo, W.; Cheng, C.; Wu, Y.; Jiang, Y.; Gao, J.; Li, D.; Jiang, L. Bio‐Inspired Two‐Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane. Adv. Mater. 2013, 25(42), 6064–6068. DOI: 10.1002/adma.201302441.
  • Hong, S.; Ming, F.; Shi, Y.; Li, R.; Kim, I. S.; Tang, C. Y.; Alshareef, H. N.; Wang, P. Two-Dimensional Ti3C2Tx MXene Membranes as Nanofluidic Osmotic Power Generators. ACS Nano. 2019, 13(8), 8917–8925. DOI: 10.1021/acsnano.9b02579.
  • Chen, W.; Zhang, Q.; Qian, Y.; Xin, W.; Hao, D.; Zhao, X.; Zhu, C.; Kong, X. Y.; Lu, B.; Jiang, L., et al. Improved Ion Transport in Hydrogel-Based Nanofluidics for Osmotic Energy Conversion. ACS Central Sci. 2020, 6(11), 2097–2104. DOI: 10.1021/acscentsci.0c01054.
  • Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self‐Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Adv. Mater. 2018, 30(18), 1705925. DOI: 10.1002/adma.201705925.
  • Wu, Y.; Luo, Y.; Cuthbert, T. J.; Shokurov, A. V.; Chu, P. K.; Feng, S. P.; Menon, C. Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. Adv. Sci. 2022, 9(11), 2106008. DOI: 10.1002/advs.202106008.
  • Du, S.; Zhou, N.; Gao, Y.; Xie, G.; Du, H.; Jiang, H.; Zhang, L.; Tao, J.; Zhu, J. Bioinspired Hybrid Patches with Self-Adhesive Hydrogel and Piezoelectric Nanogenerator for Promoting Skin Wound Healing. Nano. Res. 2020, 13(9), 2525–2533. DOI: 10.1007/s12274-020-2891-9.
  • Zhang, Y.; Jeong, C. K.; Wang, J.; Chen, X.; Choi, K. H.; Chen, L. Q.; Chen, W.; Zhang, Q. M.; Wang, Q. Hydrogel Ionic Diodes Toward Harvesting Ultralow‐Frequency Mechanical Energy. Adv. Mater. 2021, 33(36), 2103056. DOI: 10.1002/adma.202103056.
  • Wu, X.; Li, G.; Lee, D. W. A Novel Energy Conversion Method Based on Hydrogel Material for Self-Powered Sensor System Applications. Appl. Energ. 2016, 173, 103–110. DOI: 10.1016/j.apenergy.2016.04.028.
  • Chen, J.; Zhang, L.; Tu, Y.; Zhang, Q.; Peng, F.; Zeng, W.; Zhang, M.; Tao, X. Wearable Self-Powered Human Motion Sensors Based on Highly Stretchable Quasi-Solid State Hydrogel. Nano. Energy. 2021, 88, 106272. DOI: 10.1016/j.nanoen.2021.106272.
  • Lee, K. H.; Zhang, Y. Z.; Jiang, Q.; Kim, H.; Alkenawi, A. A.; Alshareef, H. N. Ultrasound-driven two-dimensional Ti3C2Tx MXene hydrogel generator. ACS Nano. 2020, 14(3), 3199–3207. DOI: 10.1021/acsnano.9b08462.
  • Khan, A. H.; Smith, N. M.; Tullier, M. P.; Roberts, B. S.; Englertet, D.; Pojman, J. A.; Melvin, A. T. Development of a Flow-Free Gradient Generator Using a Self-Adhesive Thiol-Acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System. ACS Appl. Mater. Inter. 2021, 13(23), 26735–26747. DOI: 10.1021/acsami.1c04771.
  • Hu, K.; He, P.; Zhao, Z.; Huang, L.; Liu, K.; Lin, S.; Zhang, M.; Wu, H.; Chen, L.; Ni, Y. Nature-Inspired Self-Powered Cellulose Nanofibrils Hydrogels with High Sensitivity and Mechanical Adaptability. Carbohyd. Polym. 2021, 264, 117995. DOI: 10.1016/j.carbpol.2021.117995.
  • Zheng, C.; Lu, K.; Lu, Y.; Zhu, S.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Wu, Q.; Han, J. A Stretchable, Self-Healing Conductive Hydrogels Based on Nanocellulose Supported Graphene Towards Wearable Monitoring of Human Motion. Carbohyd. Polym. 2020, 250, 116905. DOI: 10.1016/j.carbpol.2020.116905.
  • Zhao, R.; Xu, X.; Hu, L. Highly Strong, Stretchable, and Conductive Reduced Graphene Oxide Composite Hydrogel-Based Sensors for Monitoring Strain and Pressure. ACS Appl. Polym. Mater. 2021, 3(10), 5155–5161. DOI: 10.1021/acsapm.1c00898.
  • Yin, H.; Li, S.; Xie, H.; Wu, Y.; Zou, X.; Huang, Y.; Wang, J. Construction of Polydopamine Reduced Graphene Oxide/Sodium Carboxymethyl Cellulose/Polyacrylamide Double Network Conductive Hydrogel with High Stretchable, pH-Sensitive and Strain-Sensing Properties. Colloid. Surface A. 2022, 642, 128428. DOI: 10.1016/j.colsurfa.2022.128428.
  • Zhao, W.; Shi, Z.; Hu, S.; Yang, G.; Tian, H. Understanding Piezoelectric Characteristics of PHEMA-Based Hydrogel Nanocomposites as Soft Self-Powered Electronics. Adv. Compos. Hybrid Mater. 2018, 1(2), 320–331. DOI: 10.1007/s42114-018-0036-3.
  • Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano. 2010, 4(7), 4324–4330. DOI: 10.1021/nn101187z.
  • Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-Enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci. Rep. 2015, 5(1), 1–10. DOI: 10.1038/srep13578.
  • Ge, L.; Li, H.; Du, X.; Zhu, M.; Chen, W.; Shi, T.; Hao, N.; Liu, Q.; Wang, K. Facile One-Pot Synthesis of Visible Light-Responsive BiPo4/Nitrogen Doped Graphene Hydrogel for Fabricating Label-Free Photoelectrochemical Tetracycline Aptasensor. Biosens. Bioelectron. 2018, 111, 131–137. DOI: 10.1016/j.bios.2018.04.008.
  • Lu, H.; Zhang, S.; Guo, L.; Li, W. Applications of Graphene-Based Composite Hydrogels: A Review. RSC Adv. 2017, 7(80), 51008–51020. DOI: 10.1039/C7RA09634H.
  • Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Preparation, Properties, and Applications of Graphene-Based Hydrogels. Front. Chem. 2018, 6, 450. DOI: 10.3389/fchem.2018.00450.
  • Yi, J.; Choe, G.; Park, J.; Lee, J. Y. Graphene Oxide-Incorporated Hydrogels for Biomedical Applications. Polym. J. 2020, 52(8), 823–837. DOI: 10.1038/s41428-020-0350-9.
  • Wasalathilake, K. C.; Galpaya, D. G. D.; Ayoko, G. A.; Yan, C. Understanding the Structure-Property Relationships in Hydrothermally Reduced Graphene Oxide Hydrogels. Carbon. 2018, 137, 282–290. DOI: 10.1016/j.carbon.2018.05.036.
  • Kaminska, I.; Das, M. R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Sobczak, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Boukherroub, R.; Szunerits, S. Reduction and Functionalization of Graphene Oxide Sheets Using Biomimetic Dopamine Derivatives in One Step. ACS Appl. Mater. Inter. 2012, 4(2), 1016–1020. DOI: 10.1021/am201664n.
  • Hu, X.; Qi, R.; Zhu, J.; Lu, J.; Luo, Y.; Jin, J.; Jiang, P. Preparation and Properties of Dopamine Reduced Graphene Oxide and Its Composites of Epoxy. J. Appl. Polym. Sci. 2014, 131(2), 39754. DOI: 10.1002/app.39754.
  • Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-Inspired Synthesis of Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water Purification. ACS Appl. Mater. Inter. 2013, 5(2), 425–432. DOI: 10.1021/am302500v.
  • Shi, Z.; Zhao, W.; Li, S.; Yang, G. Self-powered hydrogels induced by ion transport. Nanoscale. 2017, 9(43), 17080–17090. DOI: 10.1039/C7NR02962D.
  • Liu, D.; Bian, Q.; Li, Y.; Wang, Y.; Xiang, A.; Tian, H. Effect of Oxidation Degrees of Graphene Oxide on the Structure and Properties of Poly (Vinyl Alcohol) Composite Films. Compos. Sci. Technol. 2016, 129, 146–152. DOI: 10.1016/j.compscitech.2016.04.004.
  • Lee, W.; Lee, J. U.; Jung, B. M.; Byun, J. H.; Yi, J. W.; Lee, S. B.; Kim, B. S. Simultaneous Enhancement of Mechanical, Electrical and Thermal Properties of Graphene Oxide Paper by Embedding Dopamine. Carbon. 2013, 65, 296–304. DOI: 10.1016/j.carbon.2013.08.029.
  • Lyu, Q.; Hsueh, N.; Chai, C. L. L. The Chemistry of Bioinspired Catechol (Amine)-Based Coatings. ACS Biomater. Sci. Eng. 2019, 5(6), 2708–2724. DOI: 10.1021/acsbiomaterials.9b00281.
  • Guo, Q.; Chen, J.; Wang, J.; Zeng, H.; Yu, J. Recent Progress in Synthesis and Application of Mussel-Inspired Adhesives. Nanoscale. 2020, 12(3), 1307–1324. DOI: 10.1039/C9NR09780E.
  • González-Domínguez, J. M.; Martín, C.; Durá, O. J.; Merino, S.; Vázquez, E. Smart Hybrid Graphene Hydrogels: A Study of the Different Responses to Mechanical Stretching Stimulus. ACS Appl. Mater. Inter. 2018, 10(2), 1987–1995. DOI: 10.1021/acsami.7b14404.
  • Xu, X.; Yang, X.; Zhang, Z.; Hong, Y.; Liu, S.; Shan, Y.; Peng, Z.; Wang, S.; Yao, X.; Yang, Z. Identification of Metal–Air Batteries from Water Energy Harvesters. Droplet. 2023, 2(4), e80. DOI: 10.1002/dro2.80.
  • Xu, T.; Ding, X.; Shao, C.; Song, L.; Lin, T.; Gao, X.; Xue, J.; Zhang, Z.; Qu, L. Electric Power Generation Through the Direct Interaction of Pristine Graphene‐Oxide with Water Molecules. Small. 2018, 14(14), 1704473. DOI: 10.1002/smll.201704473.
  • Han, Y.; Zhang, Z.; Qu, L. Power Generation from Graphene-Water Interactions. FlatChem. 2019, 14, 100090. DOI: 10.1016/j.flatc.2019.100090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.