22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Degradable rGO-MoS2-Fe2O3 based carboxymethyl cellulose packaging films for fruit preservation

, , &
Pages 139-148 | Received 26 Oct 2023, Accepted 17 May 2024, Published online: 28 May 2024

References

  • Sapper, M.; Chiralt, A. Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 2018, 8(5), 152. DOI: 10.3390/coatings8050152.
  • Giannakourou, M. C.; Tsironi, T. N. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods. 2021, 10(4), 830. DOI: 10.3390/foods10040830.
  • Balasubramaniam, S. L.; Patel, A. S.; Nayak, B. Surface Modification of Cellulose Nanofiber Film with Fatty Acids for Developing Renewable Hydrophobic Food Packaging. Food Pack. Shelf Life. 2020, 26, 100587. DOI: 10.1016/j.fpsl.2020.100587.
  • Atta, O. M.; Manan, S.; Ahmed, A. A. Q.; Awad, M. F.; Ul-Islam, M.; Subhan, F.; Ullah, M. W.; Yang, G. Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application. Polymers. 2021, 13(14), 2310. DOI: 10.3390/polym13142310.
  • Roy, S.; Rhim, J.-W. Preparation of Carrageenan-Based Functional Nanocomposite Films Incorporated with Melanin Nanoparticles. Colloids Surf. B: Biointerfaces. 2019, 176, 317–324. DOI: 10.1016/j.colsurfb.2019.01.023.
  • Yildirim, S.; Röcker, B.; Pettersen, M. K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2017, 17(1), 165–199. DOI: 10.1111/1541-4337.12322.
  • Zia, J.; Paul, U. C.; Heredia-Guerrero, J. A.; Athanassiou, A.; Fragouli, D. Low-Density Polyethylene/Curcumin Melt Extruded Composites with Enhanced Water Vapor Barrier and Antioxidant Properties for Active Food Packaging. Polymers. 2019, 175, 137–145. DOI: 10.1016/j.polymer.2019.05.012.
  • Yu, Y.; Zheng, J.; Li, J.; Lu, L.; Yan, J.; Zhang, L.; Wang, L. Applications of Two-Dimensional Materials in Food Packaging. Trends Food Sci. Technol. 2021, 110, 443–457. DOI: 10.1016/j.tifs.2021.02.021.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39(11), 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano. 2011, 5(12), 9703–9709. DOI: 10.1021/nn203879f.
  • Somayeh, A.; Ali, S.; Hamid Reza, B.-R. Reduced Graphene Oxide (RGO) Reinforced Mg Biocomposites for Use as Orthopedic Applications: Mechanical Properties, Cytocompatibility and Antibacterial Activity. J. Magnesium Alloys. 2021, 10(12), 3612–3627. DOI: 10.1016/j.jma.2021.09.016.
  • Zheng, J.; Li, J.; Zhang, L.; Chen, X.; Yu, Y.; Huang, H. Post-Graphene 2D Materials-Based Antimicrobial Agents: Focus on Fabrication Strategies and Biosafety Assessments. J. Mater. Sci. 2020, 55(17), 7226–7246. DOI: 10.1007/s10853-020-04507-8.
  • Cai, X.; Lin, M.; Tan, S.; Mai, W.; Zhang, Y.; Liang, Z.; Lin, Z.; Zhang, X. The Use of Polyethyleneimine-Modified Reduced Graphene Oxide as a Substrate for Silver Nanoparticles to Produce a Material with Lower Cytotoxicity and Long-Term Antibacterial Activity. Carbon. 2012, 50(10), 3407–3415. DOI: 10.1016/j.carbon.2012.02.002.
  • Yang, Z.; Hao, X.; Chen, S.; Ma, Z.; Wang, W.; Wang, C.; Yue, L.; Sun, H.; Shao, Q.; Murugadoss, V., et al. Long-Term Antibacterial Stable Reduced Graphene Oxide Nanocomposites Loaded with Cuprous Oxide Nanoparticles. J. Coll. Interf. Sci. 2018, 533, 13–23. DOI: 10.1016/j.jcis.2018.08.053.
  • Zhang, Y.; Chen, P.; Wen, F.; Yuan, B.; Wang, H. Fe3O4 Nanospheres on MoS2 Nanoflake: Electrocatalysis and Detection of Cr(vi) and Nitrite. J. Electroanal. Chem. 2016, 761, 14–20. DOI: 10.1016/j.jelechem.2015.12.004.
  • Wang, H.; Tsai, C.; Kong, D.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-Metal Doped Edge Sites in Vertically Aligned MoS2 Catalysts for Enhanced Hydrogen Evolution. Nano Res. 2015, 8(2), 566–575. DOI: 10.1007/s12274-014-0677-7.
  • Yan-Yan, C.; Mei, D.; Jianguo, W.; Haijun, J. Mechanisms and Energies of Water Gas Shift Reaction on Fe-, Co-, and Ni-Promoted MoS2 Catalysts. J. Phys. Chem. C. 2012, 116(48), 25368–25375. DOI: 10.1021/jp308383r.
  • Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni Ions Promote the Catalytic Activity of Amorphous Molybdenum Sulfide Films for Hydrogen evolution†. Chem. Sci. 2012, 3(8), 2515–2525. DOI: 10.1039/C2SC20539D.
  • Panahirad, S.; Dadpour, M.; Peighambardoust, S. H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J. M. Applications of Carboxymethyl Cellulose- and Pectin-Based Active Edible Coatings in Preservation of Fruits and Vegetables: A Review. Trends Food Sci. Technol. 2021, 110, 663–673. DOI: 10.1016/j.tifs.2021.02.025.
  • Cao, F.; E., Ju; Zhang, Y.; Wang, Z.; Liu, C.; Li, W.; Huang, Y.; Dong, K.; Ren, J.; Qu, X. An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS2. ACS Nano. 2017, 11 (5), 4651–4659. DOI: 10.1021/acsnano.7b00343.
  • Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide–Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Appl. Mater. Interfaces. 2013, 5(9), 3867–3874. DOI: 10.1021/am4005495.
  • Chen, L.; He, F.; Zhao, N.; Guo, R. Fabrication of 3D Quasi-Hierarchical Z-Scheme RGO-Fe 2 O 3 -MoS 2 Nanoheterostructures for Highly Enhanced Visible-Light-Driven Photocatalytic Degradation. Appl. Surf. Sci. 2017, 420, 669–680. DOI: 10.1016/j.apsusc.2017.05.099.
  • Elbasuney, S.; Yehia, M.; Ismael, S.; Al-Hazmi, N. E.; El-Sayyad, G. S.; Tantawy, H. Potential Impact of Reduced Graphene Oxide Incorporated Metal Oxide Nanocomposites as Antimicrobial, and Antibiofilm Agents Against Pathogenic Microbes: Bacterial Protein Leakage Reaction Mechanism. J. Cluster Sci. 2022, 34(2), 823–840. DOI: 10.1007/s10876-022-02255-0.
  • Le, T.; Maki, H.; Okazaki, E.; Osako, K.; Takahashi, K. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus Japonicus Scales. J. Food Sci. 2018, 83(7), 1888–1895. DOI: 10.1111/1750-3841.14193.
  • Lin, D.; Yang, Y.; Wang, J.; Yan, W.; Wu, Z.; Chen, H.; Zhang, Q.; Wu, D.; Qin, W.; Tu, Z. Preparation and Characterization of TiO2-Ag Loaded Fish Gelatin-Chitosan Antibacterial Composite Film for Food Packaging. Int. J. Biol. Macromol. 2020, 154, 123–133. DOI: 10.1016/j.ijbiomac.2020.03.070.
  • Montoya, Ú.; Zuluaga, R.; Castro, C.; Vélez, L.; Gañán, P. Starch and Starch/Bacterial Nanocellulose Films as Alternatives for the Management of Minimally Processed Mangoes. Starch. 2018, 71(5–6), 1800120. DOI: 10.1002/star.201800120.
  • Zhang, M.; Zhao, F.; Yang, Y.; Li, H.; An, T.; Zhang, J. The Effect of rGO-Fe2O3 Nanocomposites with Spherical, Hollow and Fusiform Microstructures on the Thermal Decomposition of TKX-50. J. Phys. Chem. Solids. 2021, 153(43), 109982. DOI: 10.1016/j.jpcs.2021.109982.
  • Kang, J. H.; Kim, T.; Choi, J.; Park, J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, K. T.; Yang, S. J.; Park, C. R. Hidden Second Oxidation Step of Hummers Method. Chem. Mater. 2016, 28(3), 756–764. DOI: 10.1021/acs.chemmater.5b03700.
  • Liu, T.; Qin, J.; Wang, J.; Li, J. On the Tribological Properties of RGO–MoS2 Composites Surface Modified by Oleic Acid. Tribol. Lett. 2022, 70(1), 14. DOI: 10.1007/s11249-021-01559-y.
  • Zhang, M.; Zhao, F.; Yang, Y.; Zhang, J.; Li, N.; Gao, H. Effect of rGO–Fe2O3 Nanocomposites Fabricated in Different Solvents on the Thermal Decomposition Properties of Ammonium Perchlorate. CrystEngcomm. 2018, 20(43), 7010–7019. DOI: 10.1039/C8CE01434E.
  • Li, J.; Zheng, J.; Yu, Y.; Su, Z.; Zhang, L.; Chen, X. Facile Synthesis of rGO-MoS2-Ag Nanocomposites with Long-Term Antimicrobial Activities. Nanotechnology. 2020, 31(12), 125101. DOI: 10.1088/1361-6528/ab5ba7.
  • Riu, F.; Ruda, A.; Ibba, R.; Sestito, S.; Lupinu, I.; Piras, S.; Widmalm, G.; Carta, A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals. 2022, 15(8), 942. DOI: 10.3390/ph15080942.
  • Sayes, C. M.; Gobin, A. M.; Ausman, K. D.; Mendez, J.; West, J. L.; Colvin, V. L. Nano-C60 Cytotoxicity Is Due to Lipid Peroxidation. Biomaterials. 2005, 26(36), 7587–7595. DOI: 10.1016/j.biomaterials.2005.05.027.
  • Sun, W.; Wu, F.-G. Two‐Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem. - Asian J. 2018, 13(22), 3378–3410. DOI: 10.1002/asia.201800851.
  • Pan, N.; Wei, Y.; Zuo, M.; Li, R.; Ren, X.; Huang, T.-S. Antibacterial Poly (ε-Caprolactone) Fibrous Membranes Filled with Reduced Graphene Oxide-Silver. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 603, 125186. DOI: 10.1016/j.colsurfa.2020.125186.
  • Geetha Bai, R.; Muthoosamy, K.; Shipton, F. N.; Pandikumar, A.; Rameshkumar, P.; Huang, N. M.; Manickam, S. The Biogenic Synthesis of aReduced Graphene Oxide–Silver (RGO–Ag) Nanocomposite and its Dual Applications as an Antibacterial Agent and Cancer Biomarker Sensor†. RSC Adv. 2016, 6, 36576–36587. DOI: 10.1039/C6RA02928K.
  • Bradley, D. G.; Min, D. B. Singlet Oxygen Oxidation of Foods. Crit. Rev. Food Sci. Nutr. 1992, 31(3), 211–236. DOI: 10.1080/10408399209527570.
  • Yang, F.; Li, X.; Meng, D.; Yang, Y. Determination of Ultraviolet Absorbers and Light Stabilizers in Food Packaging Bags by Magnetic Solid Phase Extraction Followed by High-Performance Liquid Chromatography. Food Anal. Methods. 2017, 10(10), 3247–3254. DOI: 10.1007/s12161-017-0896-0.
  • Vargas-Torrico, M. F.; von Borries-Medrano, E.; Aguilar-Méndez, M. A. Development of Gelatin/Carboxymethylcellulose Active Films Containing Hass Avocado Peel Extract and their Application As a Packaging for the Preservation of Berries. Int. J. Biol. Macromol. 2022, 206, 1012–1025. DOI: 10.1016/j.ijbiomac.2022.03.101.
  • Liu, Y.; Yuan, Y.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, D.; Cui, H.; Lin, L.; He, J., et al. Preparation and Characterization of Chitosan Films with Three Kinds of Molecular Weight for Food Packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. DOI: 10.1016/j.ijbiomac.2020.03.217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.