119
Views
13
CrossRef citations to date
0
Altmetric
INNOVATIVE APPLICATION BRIEF

Higher-order shear deformation of very thick simply supported equilateral triangular plates under uniform load

Pages 514-522 | Received 24 Aug 2015, Accepted 23 Nov 2015, Published online: 07 Jun 2016

References

  • Eipakchi, H. R. (2010). Third-order shear deformation theory for stress analysis of a thick conical shell under pressure. Journal of the Mechanics of Materials and Structures 5(1):1–17. doi:10.2140/jomms.2010.5.1.
  • Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian, L. F., Martins, P. A. L. S. (2005). Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures 69(4):449–457. doi:10.1016/j.compstruct.2004.08.003.
  • Gao, X. L., Huang, J. X., Reddy, J. N. (2013). A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mechanica 224(11): 2699–2718. doi:10.1007/s00707-013-0880-8.
  • Hull, A. J. (2005). An exact analytical expression of the shear coefficient in the Mindlin plate equation. Journal of the Acoustical Society of America 117(4):2601. doi:10.1121/1.4777653.
  • Hull, A. J. (2006). Mindlin shear coefficient determination using model comparison. Journal of Sound and Vibration 294(1–2):125–130. doi:10.1016/j.jsv.2005.10.018.
  • Jun, L., Guangwei, R., Jin, P., Xiaobin, L., Weiguo, W. (2014). Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mechanics Based Design of Structures and Machines 42(1):111–129. doi:10.1080/15397734.2013.846224.
  • Kim, N. I., Jeon, C. K. (2013). Couples static and dynamic analyses of shear deformable composite beams with channel-sections. Mechanics Based Design of Structures and Machines 41(4):489–511. doi:10.1080/15397734.2013.797332.
  • Kirchhoff, G. (1850). Über das gleichgewicht und die bewegung einer elastischen scheibe [On the balance and the movement of a resilient disc]. Journal für die Reine und Angewandte Mathematik 40:51–88. doi:10.1515/crll.1850.40.51.
  • Larbi, L. O., Kaci, A., Houari, M. S. A., Tounsi, A. (2013). An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41(4):421–433. doi:10.1080/15397734.2013.763713.
  • Lim, T. C. (2010). In-plane stiffness of semiauxetic laminates. Journal of Engineering Mechanics 136(9):1176–1180. doi:10.1061/(asce)em.1943-7889.0000167.
  • Lim, T. C. (2013). Optimal Poisson's ratios for laterally loaded rectangular plates. Journal of Materials: Design and Applications 227(2):111–123. doi:10.1177/1464420712472634.
  • Lim, T. C. (2014a). Buckling and vibration of circular auxetic plates. Journal of Engineering Materials and Technology 136(2):021007. doi:10.1115/1.4026617.
  • Lim, T. C. (2014b). Vibration of thick auxetic plates. Mechanics Research Communications 61:60–66. doi:10.1016/j.mechrescom.2014.07.009.
  • Lim, T. C. (2015a). Auxetic Materials and Structures. Singapore: Springer.
  • Lim, T. C. (2015b). Elastic stability analysis of auxetic columns using third-order shear deformation theory. Physica Status Solidi B 252(7):1575–1579. doi:10.1002/pssb.201451637.
  • Lim, T. C. (2015c). Longitudinal wave velocity in auxetic rods. Journal of Engineering Materials and Technology 137(2):024502. doi:10.1115/1.4029531.
  • Lim, T. C. (2015d). Shear deformation in beams with negative Poisson's ratio. Journal of Materials: Design and Applications 229(6):447–454. doi:10.1177/1464420714526583.
  • Lim, T. C. (2015e). Thermal stresses in auxetic plates and shells. Mechanics of Advanced Materials and Structures 22(3): 205–212. doi:10.1080/15376494.2012.727203.
  • Lim, T. C. (2016). Bending stresses in triangular auxetic plates. Journal of Engineering Materials and Technology 138(1):014501. doi:10.1115/1.4031665.
  • Love, A. E. H. (1888). The small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 179:491–546. doi:10.1098/rsta.1888.0016.
  • Mindlin, R. D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18:31–38.
  • Rastgaar Aagaah, M., Nakhaie Jazar, G., Nazari, G. (2004). Third Order Shear Deformation Theory for Modeling of Laminated Composite Plates. SEM X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, CA, Jun. 7–10.
  • Reddy, J. N. (2006). Theory and Analysis of Elastic Plates and Shells. 2nd ed. Boca Raton, FL: CRC Press.
  • Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12:69–77.
  • Róssle, A. (1999). On the derivation of an asymptotically correct shear correction factor for the Reissner-Mindlin plate mode. Comptes Rendus de l'Académie des Sciences - Series I – Mathematics 328(3):269–274. doi:10.1016/s0764-4442(99)80133-5.
  • Shahrjerdi, A., Bayat, M., Mustapha, F., Sapuan, S. M., Zahari, R. (2010). Second-order shear deformation theory to analyze stress distribution for solar functionally graded plates. Mechanics Based Design of Structures and Machines 38(3): 348–361. doi:10.1080/15397731003744603.
  • Shi, G. (2007). A new simple third-order shear deformation theory of plates. International Journal of Solids and Structures 44(3):4399–4417. doi:10.1016/j.ijsolstr.2006.11.031.
  • Shufrin, I., Pasternak, E., Dyskin, A. V. (2015a). Hybrid materials with negative Poisson's ratio inclusions. International Journal of Engineering Science 89:100–120. doi:10.1016/j.ijengsci.2014.12.006.
  • Shufrin, I., Pasternak, E., Dyskin, A. V. (2015b). Negative Poisson's ratio in hollow sphere materials. International Journal of Solids and Structures 54:192–214. doi:10.1016/j.ijsolstr.2014.10.014.
  • Şimşek, M., Kocatúrk, T. (2007). Free vibration analysis of beams by using a third-order shear deformation theory. Sadhana 32(3):167–179. doi:10.1007/s12046-007-0015-9.
  • Slann, A., White, W., Scarpa, F., Boba, K., Farrow, I. (2015). Cellular plates with auxetic rectangular perforations. Physica Status Solidi B 252(7):1533–1539.
  • Stephen, N. G. (1997). Mindlin plate theory: Best shear coefficient and higher spectra validity. Journal of Sound and Vibration 202(4):539–553. doi:10.1006/jsvi.1996.0885.
  • Thai, C. H., Nguyen-Xuan, H., Bordase, S. P. A., Nguyen-Thanh, N., Rabczuk, T. (2015). Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures 22(6):451–469.
  • Wang, C. M., Reddy, J. N., Lee, K. H. (2000). Shear Deformable Beams and Plates: Relationships with Classical Solutions. Oxford: Elsevier.
  • Wattanasakulpong, N., Prusty, G. B., Kelly, D. W. (2013). Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading. Journal of Sandwich Structures & Materials 15(5):583–606. doi:10.1177/1099636213495751.
  • Woinowsky-Krieger, S. (1933). Berechnung der ringsum frei aufliegenden gleichseitigen Dreiecksplatte [Calculations pertaining to freely supported equilateral triangle plate]. Ingenieur-Archiv 4(3):254–262. doi:10.1007/bf02149076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.