742
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Deployable lenticular stiffeners for origami-inspired mechanisms

&
Pages 634-649 | Received 01 Sep 2017, Accepted 14 Nov 2017, Published online: 01 Mar 2018

References

  • Arya, M., N. Lee, and S. Pellegrino. 2016. Ultralight structures for space solar power satellites. AIAA SciTech Forum., American Institute of Aeronautics and Astronautics. doi:10.2514/6.2016-1950.
  • Blake, L. V., and M. W. Long. 2009. Antennas: Fundamentals, design, measurement. 3rd ed. Raleigh: SciTech Publishing.
  • Bowen, L., B. Trease, M. Frecker, and T. Simpson. 2016. Dynamic modeling and analysis of an origami-inspired optical shield for the starshade spacecraft. Conference on Smart Materials, Adaptive Structures and Intelligent Systems, ASME, V001T01A012. doi:10.1115/SMASIS2016-9172.
  • Casal, G., and M. E. Vázquez-Méndez. The clothoid computation: A simple and efficient numerical algorithm. Journal of Surveying Engineering 142 (3):04016005. doi:10.1061/(ASCE)SU.1943-5428.0000177.
  • Chen, W.-J., G.-Y. Fu, J.-H. Gong, Y.-L. He, and S.-L. Dong. 2002. Dynamic deployment simulation for pantographic deployable masts. Mechanics of Structures and Machines 30 (2):249–77. doi:10.1081/SME-120003018.
  • Costantine, J., Y. Tawk, I. Maqueda, M. Sakovsky, G. Olson, S. Pellegrino, and C. G. Christodoulou. 2016. Uhf deployable helical antennas for cubesats. IEEE Transactions on Antennas and Propagation 64 (9):3752–59.
  • Gea, H. C., and J. Luo. 1999. Automated optimal stiffener pattern design. Mechanics of Structures and Machines 27 (3):275–92. doi:10.1080/08905459908915699.
  • Ghaleh, P. B., and S. Malaek. 2015. On dynamic stiffness of spacecraft flexible appendages in deployment phase. Aerospace Science and Technology 47:1–9. doi:10.1016/j.ast.2015.09.006.
  • Holland, A. F., J. Pearson, W. Lysford, and J. Straub. 2016. Consideration of the use of origami-style solar panels for use on a terrestrial/orbital wireless power generation and transmission spacecraft. In Energy harvesting and storage: Materials, devices, and applications, eds. N. K. Dhar and A. K. Dutta, 98650E. International Society for Optics and Photonics, Bellingham, Washington, USA. doi:10.1117/12.2228012.
  • Iizuka, K. 2008. Engineering optics. 3rd ed. New York: Springer Science+Business Media, LLC.
  • Jorgensen, J., E. L. Louis, J. D. Hinkle, M. Silver, B. Zuckermandel, and S. Enger. 2005. Dynamics of an elastically deployable solar array: Ground test model validation. Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Austin, TX.
  • Kim, J., D. Y. Lee, S. R. Kim, and K. J. Cho, K. J. 2015. A self-deployable origami structure with locking mechanism induced by buckling effect. 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE,3166–71. doi:10.1109/ICRA.2015.7139635.
  • Kimia, B. B., I. Frankel, and A.-M. Popescu. 2003. Euler spiral for shape completion. International Journal of Computer Vision 54 (1–3):159–82.
  • Kollar, L., and E. Dulacska. 1984. Buckling of shells for engineers. New York: John Wiley & Sons.
  • Kwok, K. 2015. Shape recovery of viscoelastic beams after stowage. Mechanics Based Design of Structures and Machines 43 (1):95–111. doi:10.1080/15397734.2014.930668.
  • Lappas, V., J. Fernandez, L. Visagie, O. Stohlman, A. Viquerat, G. Prassinos, T. Theodorou, and M. Schenk. 2014. Demonstrator flight missions at the surrey space centre involving gossamer sails, 153–67. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-34907-2_11.
  • Levien, R. The euler spiral: A mathematical history. Technical Report UCB/EECS-2008-111, EECS Department, University of California, Berkeley.
  • Masterson, R. A., D. W. Miller, and R. L. Grogan. 2002. Development and validation of reaction wheel distrubance models. Journal of Sound and Vibration, 249 (3):575–98. doi:10.1006/jsvi.2001.3868.
  • Mobrem, M., and D. Adams. 2009. Deployment analysis of the lenticular jointed antennas onboard the mars express spacecraft. Journal of Spacecraft and Rockets 46 (2):394–402. doi:10.2514/1.36890.
  • Narayan, S. 2014. Approximating cornu spirals by arc splines. Journal of Computational and Applied Mathematics 255:789–804. doi:10.1016/j.cam.2013.06.038.
  • Puig, L., A. Barton, and N. Rando. 2010. A review on large deployable structures for astrophysics missions. Acta Astronautica 67 (1):12–26. doi:10.1016/j.actaastro.2010.02.021.
  • Reynolds, W. D., S. K. Jeon, J. A. Banik, and T. W. Murphey. 2013. Advanced folding approaches for deployable spacecraft payloads. Volume 6B: 37th Mechanisms and Robotics Conference, ASME International, Portland, Oregon, USA. doi:10.1115/detc2013-13378.
  • Ross, R. G., Jr. 2003. Vibration suppression of advanced space cryocoolers: An overview. In Smart structures and materials 2003: Damping and isolation, eds. G. S. Agnes and K.-W. Wang. Bellingham, WA: SPIE-International Society for Optical Engineering. doi:10.1117/12.497162.
  • Ross, B., N. Woo, T. G. Kraft, and J. R. Blandino 2016. Active control of solar array dynamics during spacecraft maneuvers. AIAA SciTech Forum, American Institute of Aeronautics and Astronautics. doi:10.2514/6.2016-1706.
  • Simoneau, C., P. Terriault, S. Lacasse, and V. Brailovski. 2014. Adaptive composite panel with embedded sma actuators: Modeling and validation. Mechanics Based Design of Structures and Machines 42 (2):174–92. doi:10.1080/15397734.2013.864246.
  • Sokolowski, W. M. 2007. Advanced self-deployable structures for space applications. Journal of Spacecraft and Rockets 44 (4):750–54. doi:10.2514/1.22854.
  • Stern, T. G., and K. Steele. 2016. Composite beam roll-out array—A multifunctional deployable structure for space power generation. 3rd AIAA Spacecraft Structures Conference, American Institute of Aeronautics and Astronautics, San Diego, California, USA.
  • Tan, L. T., and S. Pellegrino. 2006. Thin-shell deployable reflectors with collapsible stiffeners part 1: Approach. AIAA Journal, 44 (11):2515–23.
  • Tupper, M., N. Munshi, F. Beavers, K. Gall, M. Mikuls, and T. Meink. 2001. Developments in elastic memory composite materials for spacecraft deployable structures. In 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), Big Sky, MT, USA, vol. 5, 2541–47. doi:10.1109/AERO.2001.931215.
  • Vincent, J. F. V. 2000. Deployable structures in nature: Potential for biomimicking. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214 (1):1–10. doi:10.1177/095440620021400101.
  • Wonoto, N., D. Baerlecken, R. Gentry, and M. Swarts. 2013. Parametric design and structural analysis of deployable origami tessellation. Computer-Aided Design and Applications 10 (6):939–51. doi:10.3722/cadaps.2013.939-951.
  • You, B. D., J. M. Wen, G. Y. Zhang, and Y. Zhao 2016. Nonlinear dynamic modeling for a flexible laminated composite appendage attached to a spacecraft body undergoing deployment and locking motions. Journal of Aerospace Engineering 29 (5):04016018. doi:10.1061/(ASCE)AS.1943-5525.0000570.
  • Zirbel, S. A., R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease, S. P. Magleby, and L. L. Howell. 2013. Accommodating thickness in origami-based deployable arrays. Journal of Mechanical Design 135 (11):111005. doi:10.1115/1.4025372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.