408
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments

ORCID Icon &
Pages 669-692 | Received 03 Mar 2017, Accepted 25 Jan 2018, Published online: 19 Apr 2018

References

  • Arefi, M., G. H. Rahimi, M. J. Khoshgoftar. 2011. Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material. International Journal of Physical Sciences 6 (27):6315–6322. doi:10.5897/IJPS10.597.
  • Ansari, R., R. Gholami, and H. Rouhi. 2015a. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures 126:216–226. doi:10.1016/j.compstruct.2015.02.068.
  • Ansari, R., E. Hasrati, R. Gholami, and F. Sadeghi. 2015b. Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams. Composites Part B 83:226–241. doi:10.1016/j.compositesb.2015.08.038.
  • Ansari, R., and R. Gholami. 2016. Nonlocal free vibration in the pre and post buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions. Smart Materials and Structures 25:095033 (17pp). doi:10.1088/0964-1726/25/9/095033.
  • Arefi, M. 2014. A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Latin American Journal of Solids and Structures 11 (11):2073–2092. doi:10.1590/S1679-78252014001100009.
  • Arefi, M. 2016. Analysis of wave in a functionally graded magneto-electroelasticnano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mechanica 228 (2):475–493. doi:10.1007/s00707-016-1584-7.
  • Arefi, M. 2016a, Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Applied Mathematics and Mechanics (English Edition) 37 (3):289–302.
  • Arefi, M., and A. M. Zenkour. 2016. Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory. Materials Research Express 3 (11):115704. doi:10.1088/2053-1591/3/11/115704.
  • Arefi, M., and Zenkour, A. M. 2017. Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates. Mechanics Research Communications 84:27–42. doi:10.1016/j.mechrescom.2017.06.002.
  • Arefi, M., and A. M. Zenkour. 2017a. Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on visco-Pasternak foundation. Mechanics Research Communications 79:51–62. doi:10.1016/j.mechrescom.2017.01.004.
  • Arefi, M., and A. M. Zenkour. 2017b. Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam. Journal of Sandwich Structures & Materials. doi:1099636217714181.
  • Arefi, M., and A. M. Zenkour. 2017c. Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory. Journal of Sandwich Structures & Materials. doi:1099636217697497.
  • Arefi, M., and A. M. Zenkour. 2017d. Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory. Composite Structures 162:108–122. doi:10.1016/j.compstruct.2016.11.071.
  • Arefi, M., and A. M. Zenkour. 2017e. Sizedependent vibration and bending analyses of the piezomagnetic three-layer nanobeams. Applied Physics A, 123, 202.
  • Bhangale, R. K., and N. Ganesan. 2005. Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. Journal of Sound and Vibration 288:412–422. doi:10.1016/j.jsv.2005.04.008.
  • Bhangale, R. K., and N. Ganesan. 2006. Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. International Journal of Solids and Structures 43:3230–3253. doi:10.1016/j.jsv.2005.12.030.
  • Bin, W., Y. Jiangong, and H. Cunfu. 2008. Wave propagation in non-homogeneous magneto-electro-elastic plates. Journal of Sound and Vibration 317:250–264. doi:10.1016/j.jsv.2008.03.008.
  • Cheng, L. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–478. doi:10.1080/15397734.2016.1242079.
  • Ebrahimi, F., and E. Salari. 2015. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Composite Structures 128:363–380. doi:10.1016/j.compstruct.2015.03.023.
  • Ebrahimi, F., and M. R. Barati. 2017. Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. Journal of Mechanics 33 (1):23–33. doi:10.1017/jmech.2016.46.
  • Eringen, A. C. 1972. Nonlocal polar elastic continua. International Journal of Engineering Science 10:1–16. doi:10.1016/0020-7225(72)90070-5.
  • Eringen, A. C. 1983. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics 54:4703–4710. doi:10.1063/1.332803.
  • Eringen, A. C. 2002. Nonlocal continuum field theories. Springer Science & Business Media. Springer-Verlag New York.
  • Ghadiri, M., and H. Safarpour. 2016. Free vibration analysis of embedded magneto-electro-thermoelastic cylindrical nanoshell based on the modified couple stress theory. Applied Physics A 122:833. doi:10.1007/s00339-016-0365-4.
  • Ghorbanpour Arani, A., M. Salari, H. Khademizadeh, and A. Arefmanesh. 2009. Magneto thermoelastic transient response of a functionally graded thick hollow sphere subjected to magnetic and thermoelastic fields. Archive of Applied Mechanics 79:481–497. doi:10.1007/s00419-008-0247-0.
  • Ghorbanpour Arani, A., E. Haghparast, Z. Khoddami Maraghi, and S. Amir. 2014. CNTRC cylinder under non-axisymmetric thermo-mechanical loads and uniform electromagnetic fields. Arabian Journal for Science & Engineering 39 (12):9057–9069. doi:10.1007/s13369-014-1419-6 (Springer Science & Business Media BV).
  • He, S.-R., and Q. Guan. 2006. Three dimensional analysis of piezoelectric/piezomagnetic and elastic media. Mechanics Based Design of Structures and Machines 34 (2):201–212. doi:10.1080/15397730600773973.
  • Huang, D. J., H. J. Ding, and W. Q. Chen. 2010. Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. European Journal of Mechanics A/Solids 29:356–369. doi:10.1016/j.euromechsol.2009.12.002.
  • Jianguo, D., C. Liang, X. Libiao, and D. Guansuo. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–237. doi:10.1080/15397734.2017.1329020.
  • Ke, L. L., and Y. S. Wang. 2014. Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Physica E 63:52–61. doi:10.1007/s10409-014-0072-3.
  • Ke, L. L., Y. S. Wang, J. Yang, and S. Kitipornchai. 2014a. Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mechanica Sinica 30 (4):516–525. doi:10.1007/s10409-014-0072-3.
  • Ke, L. L., Y. S. Wang, and J. N. Reddy. 2014. Thermo-electro-mechanical vibration of size dependent piezoelectric cylindrical nanoshells under various boundary conditions. Composite Structures 116:626–636. doi:10.1016/j.compstruct.2014.05.048.
  • Ke, L. L., Y. S. Wang, J. Yang, and S. Kitipornchai. 2014b. The size dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Materials and Structures 23:125036 (17pp). doi:10.1088/0964-1726/23/12/125036.
  • Kim, J., and J. N. Reddy. 2013. Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory. Composite Structures 03:86–98. doi:10.1016/j.compstruct.2013.03.007.
  • Kumaravel, A., N. Ganesan, and S. Swarnamani. 2007a. Free vibration behavior of multiphase and layered magneto-electro-elastic beam. Journal of Sound and Vibration 299:44–63. doi:10.1016/j.jsv.2006.06.044.
  • Kumaravel, A., N. Ganesan, and R. Sethuraman. 2007b. Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscipline Modeling in Materials and Structures 3 (4):461–476. doi:10.1163/157361107782106401.
  • Lang, Z., and L. Xuewu. 2013. Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Applied Mathematical Modelling 37:2279–2292. doi:10.1016/j.apm.2012.05.023.
  • Larbi, L. O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41 (4):421–433. doi:10.1080/15397734.2013.763713.
  • Li, Y. S., Z. Y. Cai, and S. Y. Shi. 2014. Buckling and free vibration of magneto electro elastic nanoplate based on nonlocal theory. Composite Structures 111:522–529. doi:10.1016/j.compstruct.2014.01.033.
  • Li, Y. S., P. Ma, and W. Wang. 2015. Bending, buckling, and free vibration of magneto electro elastic nanobeam based on nonlocal theory. Journal of Intelligent Material Systems and Structures 27 (9):1139–1149. doi:10.1177/1045389x15585899.
  • Liu, C., L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai. 2013. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Composite Structures 106:167–174. doi:10.1016/j.compstruct.2013.05.031.
  • Lotey, G. S., and N. Verma. 2013. Magnetoelectric coupling in multiferroic BiFeOU nanowires. Chemical Physics Letters 579:78–84. doi:10.1080/00150193.2012.675272.
  • Mohammadimehr, M., S. V. Okhravi, and S. M. AkhavanAlavi. 2016. Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. Journal of Vibration and Control 288:412–422. doi:10.1177/1077546316664022.
  • Pan, E. 2001. Exact solution for simply supported and multilayered magneto-electro elastic plates. Journal of Applied Mechanics 68:608–618. doi:10.1115/1.1380385.
  • Pan, E., and F. Han. 2005. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science 43:321–339. doi:10.1016/j.ijengsci.2004.09.006.
  • Pan, E., and N. Waksmanski. 2016. Deformation of a layered magnetoelectroelastic simply-supported plate with nonlocal effect, an analytical three-dimensional solution. Smart Materials and Structures 25:095013 (17pp). doi:10.1088/0964-1726/25/9/095013.
  • Rahimi, G. H., M. Arefi, and M. J. Khoshgoftar. 2012. Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method. Mechanika 18 (3):292–300. doi:10.5755/j01.mech.18.3.1875.
  • Ramirez, F., P. R. Heyliger, and E. Pan. 2006. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration 292:626–644. doi:10.1016/j.jsv.2005.08.004.
  • Reddy, J. N. 2007. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45:288–307. doi:10.1016/j.ijengsci.2007.04.004.
  • Şimşek, M., and H. H. Yurtcu. 2013. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Composite Structures 97:378–386. doi:10.1016/j.compstruct.2012.10.038.
  • Sladek, J., V. Sladek, P. Solek, and Ch. Zhang. 2010. Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG. International Journal of Solids and Structures 47:1381–1391. doi:10.1016/j.ijsolstr.2010.01.025.
  • Sofiyev, A., H. Hui, A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2015. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Sharma, S., R. Vig, and N. Kumar. 2016. Finite element modeling of smart piezo structure: Considering dependence of piezoelectric coefficients on electric field. Mechanics Based Design of Structures and Machines 44 (4):372–383. doi:10.1080/15397734.2015.1076728.
  • Tong, Z. H., S. H. Lo, C. P. Jiang, and Y. K. Cheung. 2008. An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric–magnetic fiber composites. International Journal of Solids and Structures 45:5205–5219. doi:10.1016/j.ijsolstr.2008.04.003.
  • Tufekci, E., U. Eroglu, and A. Serhan. 2016. Exact solution for in-plane static problems of circular beams made of functionally graded materials. Mechanics Based Design of Structures and Machines 44 (4):476–494. doi:10.1080/15397734.2015.1121398.
  • Vaezi, M., M. Moory Shirbani, and A. Hajnayeb. 2016. Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads. Physica E 75:280–286. doi:10.1016/j.physe.2015.09.019.
  • Wu, C. P., and Y. H. Tsai. 2007. Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. International Journal of Engineering Science 45:744–769. doi:10.1016/j.ijengsci.2007.05.002.
  • Wang, X., X. Liang, and Ch. Jin. 2016. Accurate dynamic analysis of functionally graded beams under a moving point load. Mechanics Based Design of Structures and Machines 45 (1):76–91. doi:10.1080/15397734.2016.1145060.
  • Xin, L., and Z. Hu. 2015. Free vibration of layered magneto-electro-elastic beams by SS-DSC approach. Composite Structures 125:96–103. doi:10.1016/j.compstruct.2015.01.048.
  • Yuda, H., and Z. Xiaoguang. 2011. Parametric vibrations and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines 39 (3):367–377. doi:10.1080/15397734.2011.557970.
  • Zenkour, A. M., and M. Arefi. 2017. Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation. Journal of Thermal Stresses 40 (2):167–184. doi:10.1080/01495739.2016.1229146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.