345
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

3D transient elasto-plastic finite element analysis of a flatted railway wheel in rolling contact

, &
Pages 751-766 | Received 20 Feb 2017, Accepted 22 Mar 2018, Published online: 14 May 2018

References

  • Alemi, A., F. Corman, and G. Lodewijks. 2017. Condition monitoring approaches for the detection of railway wheel defects. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 231 (8):961–81. doi:10.1177/0954409716656218.
  • Baeza, L., A. Roda, J. Carballeira, and E. Giner. 2006. Railway train-track dynamics for wheel flats with improved contact models. Nonlinear Dynamics 45 (3):385–97. doi:10.1007/s11071-005-9014-8.
  • Bian, J., Y. Gu, and M. H. Murray. 2013a. A dynamic wheel–rail impact analysis of railway track under wheel flat by finite element analysis. Vehicle System Dynamics 51 (6):784–97. doi:10.1080/00423114.2013.774031.
  • Bian, J., Y. Gu, and M. H. Murray. 2013b. Numerical study of impact forces on railway sleepers under wheel flat. Advances in Structural Engineering 16 (1):127–34. doi:10.1260/1369-4332.16.1.127.
  • Chaboche, J. L. 1991. On some modifications of kinematic hardening to improve the description of ratchetting effects. International Journal of Plasticity 7 (7):661–78. doi:10.1016/0749-6419(91)90050-9.
  • Chakrabarty, J. 2000. Applied plasticity. New York: Springer. doi:10.1007/978-1-4757-3268-9.
  • Dong, C., H. Ding, and S. Gao. 2002. A method for recognition and location of structural damage. Mechanics of Structures and Machines 30 (2):193–201. doi:10.1081/SME-120003015.
  • Dukkipati, R. V., and R. Dong. 1999. Impact loads due to wheel flats and shells. Vehicle System Dynamics 31 (1):1–22. doi:10.1076/vesd.31.1.1.2097.
  • IP, SAS. 2013. ANSYS mechanical APDL documentation. Canonsburg, PA: ANSYS, Inc. 15.
  • Jergeus, J., C. Odenmarck, R. Lunden, P. Sotkovszki, B. Karlsson, and P. Gullers. 1999. Full-scale railway wheel flat experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 213 (1):1–13. doi:10.1243/0954409991530985.
  • Kabo, E., J. C. Nielsen, and A. Ekberg. 2006. Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Vehicle System Dynamics 44 (Sup1):718–29. doi:10.1080/00423110600885715.
  • Kalker, J. J. 1990. Three-dimensional elastic bodies in rolling contact. Dorndrecht: Kluwer Academic Publishers.
  • Kim, T. Y., and H. K. Kim. 2014. Three-dimensional elastic-plastic finite element analysis for wheel-rail rolling contact fatigue. International Journal of Engineering and Technology 6 (3):1593–600.
  • Kovalev, R., V. N. Yazykov, G. S. Mikhalchenko, and D. Y. Pogorelov. 2003. Railway vehicle dynamics: Some aspects of wheel–rail contact modeling and optimization of running gears. Mechanics Based Design of Structures and Machines 31 (3):315–34. doi:10.1081/SME-120022853.
  • Li, Z., X. Zhao, R. Dollevoet, and M. Molodova. 2008. Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects. Vehicle System Dynamics 46 (S1):237–46. doi:10.1080/00423110801935855.
  • Li, Z., X. Zhao, C. Esveld, R. Dollevoet, and M. Molodova. 2008. An investigation into the causes of squats – Correlation analysis and numerical modeling. Wear 265 (9):1349–55. doi:10.1016/j.wear.2008.02.037.
  • Liao, A. H., H. W. Zhang, and C. H. Wu. 2007. A finite element model for 3D elastoplastic frictional contact analysis and its application in numerical simulation of turbocharger compressor. Mechanics Based Design of Structures and Machines 35 (3):267–89. doi:10.1080/15397730701404684.
  • Molodova, M., Z. Li, A. Núñez, and R. Dollevoet. 2014. Automatic detection of squats in railway infrastructure. IEEE Transactions on Intelligent Transportation Systems 15 (5):1980–90. doi:10.1109/TITS.2014.2307955.
  • Molodova, M., Z. Li, A. Núñez, and R. Dollevoet. 2015. Parametric study of axle box acceleration at squats. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 229 (8):841–51. doi:10.1177/0954409714523583.
  • Newton, S. G., and R. A. Clark. 1979. An investigation into the dynamic effects on the track of wheelflats on railway vehicles. Journal of Mechanical Engineering Science 21 (4):287–97. doi:10.1243/JMES_JOUR_1979_021_046_02.
  • Nielsen, J. C. O. 1994. Dynamic interaction between wheel and track-a parametric search towards an optimal design of rail structures. Vehicle System Dynamics 23 (1):115–32. doi:10.1080/00423119408969053.
  • Nielsen, J. C., and A. Igeland. 1995. Vertical dynamic interaction between train and track influence of wheel and track imperfections. Journal of Sound and Vibration 187 (5):825–39. doi:10.1006/jsvi.1995.0566.
  • Polach, P., and M. Hajžman. 2011. Computer simulations of the freight wagon laboratory excitation. Mechanics Based Design of Structures and Machines 39 (2):194–209. doi:10.1080/15397734.2011.550856.
  • Sandström, J., and A. Ekberg. 2009. Numerical study of the mechanical deterioration of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 223 (3):265–73. doi:10.1243/09544097JRRT243.
  • Schupp, G. 2003. Simulation of railway vehicles: Necessities and applications. Mechanics Based Design of Structures and Machines 31 (3):297–314. doi:10.1081/SME-120022852.
  • Steele, R. K., and M. W. Joerms. 1993. User’s guide to PHOENIX 7L3: A three dimensional rail fatigue model. R-728. Chicago, IL: Association of American Railroads Technical Center.
  • Tangtragulwong, P. 2012. Optimal railroad rail grinding for fatigue mitigation. PhD diss., Texas A & M University.
  • Vyas, N. S., and A. K. Gupta. 2006. Modeling rail wheel-flat dynamics. In Engineering Asset Management, ed. J. Mathew, J. Kennedy, L. Ma, A. Tan, and D. Anderson, 1222–31. London: Springer. doi:10.1007/978-1-84628-814-2_135.
  • Wei, Z., Z. Li, Z. Qian, R. Chen, and R. Dollevoet. 2016. 3D FE modeling and validation of frictional contact with partial slip in compression–shift–rolling evolution. International Journal of Rail Transportation 4 (1):20–36. doi:10.1080/23248378.2015.1094753.
  • Wei, Z., C. Shen, Z. Li, and R. Dollevoet. 2017. Wheel–rail impact at crossings: relating dynamic frictional contact to degradation. Journal of Computational and Nonlinear Dynamics 12 (4):041016. doi:10.1115/1.4035823.
  • Wu, X., and M. Chi. 2016. Study on stress states of a wheelset axle due to a defective wheel. Journal of Mechanical Science and Technology 30 (11):4845–57. doi:10.1007/s12206-016-1003-y.
  • Yang, J., and D. J. Thompson. 2014. Time-domain prediction of impact noise from wheel flats based on measured profiles. Journal of Sound and Vibration 333 (17):3981–95. doi:10.1016/j.jsv.2014.04.026.
  • Zhao, X., Z. Li, C. Esveld, and R. Dollevoet. 2007. The dynamic stress state of the wheel-rail contact. Proceedings of the 2nd IASME/WSEAS International Conference on Continuum Mechanics, Portoroz, Slovenia.
  • Zhao, X., and Z. Li. 2011. The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: Validation and error analysis. Wear 271 (1):444–52. doi:10.1016/j.wear.2010.10.007.
  • Zhao, X., Z. Li, and J. Liu. 2012. Wheel–Rail impact and the dynamic forces at discrete supports of rails in the presence of singular rail surface defects. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 226 (2):124–39. doi:10.1177/0954409711413975.
  • Zhao, X., and Z. Li. 2015. A three-dimensional finite element solution of frictional wheel–rail rolling contact in elasto-plasticity. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 229 (1):86–100. doi:10.1177/1350650114543717.
  • Zhu, J. J., A. K. W. Ahmed, and S. Rakheja. 2007. An adaptive contact model for simulation of wheel–rail impact load due to a wheel flat. 13th National Conference on Mechanisms and Machines, IISc, Bangalore, India, 12–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.