271
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design of a novel 6-DOF haptic master mechanism using MR clutches and gravity compensator

, , , , &
Pages 767-780 | Received 18 Oct 2017, Accepted 22 Apr 2018, Published online: 27 Aug 2018

References

  • Abovitz, R. (2001). Digital surgery: the future of medicine and human-robot symbiotic interaction. Industrial Robot: An International Journal 28(5):401–506.
  • Baz, A. J. E. C., Imam, K., McCoy, J. 1990. Active vibration control of flexible beams using shape memory actuators. Journal of Sound and Vibration 140(3):437–456.
  • Carp-Ciocardia, D. C., Staicu, S. (2005, July). Dynamics of delta parallel robot with prismatic actuators. In: IEEE International Conference on Mechatronics, 2005. ICM'05. IEEE, pp. 870–875.
  • Choi, S. B., Nguyen, P. B., Oh, J. S. (2013). A novel medical haptic device using magneto-rheological fluid. Magnetorheology: Advances and Applications, 6, 363.
  • Han, S. S., Choi, S. B., Cheong, C. C.. (2000). Position control of X–Y table mechanism using electro-rheological clutches. Mechanism and Machine Theory 35(11):1563–1577.
  • Han, Y. M., Choi, S. B. (2008). Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications. Smart Materials and Structures 17(6):065012.
  • Han, Y. M., Oh, J. S., Kim, S., Choi, S. B. (2017). Design of multi-degree motion haptic mechanisms using smart fluid-based devices. Mechanics Based Design of Structures and Machines 45(1):135–144.
  • Hua, Q. P., Zeng, X. Z., Liu, J. Y., Wang, J. Y., Guo, J. Y., Luo, F. (2008). Dynamic changes in brain activations and functional connectivity during affectively different tactile stimuli. Cellular and Molecular Neurobiology 28(1):57–70.
  • Kikuchi, T., Fukushima, K., Furusho, J., Ozawa, T. (2009). Development of quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1. Journal of Physics: Conference Series 149(1):012015.
  • Kim, P., Kim, S., Park, Y. D., Choi, S. B. (2016). Force modeling for incisions into various tissues with MRF haptic master. Smart Materials and Structures 25(3):035008.
  • Li, W. H., Liu, B., Kosasih, P. B., Zhang, X. Z. (2007). A 2-DOF MR actuator joystick for virtual reality applications. Sensors and Actuators A: Physical 137(2):308–320.
  • Li, J., Wang, S., Wang, X., He, C. (2010). Optimization of a novel mechanism for a minimally invasive surgery robot. The International Journal of Medical Robotics and Computer Assisted Surgery 6(1):83–90.
  • Oh, J. S., Choi, S. H., Choi, S. B. (2014). Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work. Smart Materials and Structures 23(9):095032.
  • Pierrot, F., Dombre, E., Dégoulange, E., Urbain, L., Caron, P., Boudet, S., Gariépy, J., Mégnien, J.-L. (1999). Hippocrate: a safe robot arm for medical applications with force feedback. Medical Image Analysis 3(3):285–300.
  • Prempraneerach, P. (2014, July). Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot. In: Computer Science and Engineering Conference (ICSEC), 2014 International. IEEE, pp. 469–474.
  • Roberts, R., Rodriguez-Leal, E. (2016). Kinematics and workspace-based dimensional optimization of a novel haptic device for assisted navigation. Mechanics Based Design of Structures and Machines, 44(1–2), 43–57.
  • Senkal, D., Gurocak, H. (2009). Spherical brake with MR fluid as multi degree of freedom actuator for haptics. Journal of Intelligent Material Systems and Structures, 20(18), 2149–2160.
  • Tavakoli, M. (2008). Haptics for Teleoperated Surgical Robotic Systems (Vol. 1). Singapore: World Scientific.
  • Tsai, L. W. (1999). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: John Wiley & Sons.
  • Velázquez, R., Pissaloux, E. E., Hafez, M., Szewczyk, J. (2008). Tactile rendering with shape-memory-alloy pin-matrix. IEEE Transactions on Instrumentation and Measurement, 57(5), 1051–1057.
  • Wang, Q. H., Wu, S. C., Liu, J. W., & Li, J. R. (2018). Design of a 6-dof force device for virtual assembly (FDVA-6) of mechanical parts. Mechanics Based Design of Structures and Machines, 46(5), 567–577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.