128
Views
22
CrossRef citations to date
0
Altmetric
Articles

On phase-lag Green–Naghdi theory without energy dissipation for electro-thermoelasticity including heat sources

, &
Pages 769-786 | Received 25 Dec 2018, Accepted 20 Apr 2019, Published online: 23 May 2019

References

  • Abbas, I. 2017a. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mechanics Based Design of Structures and Machines 45 (3):395–405.
  • Abbas, I. 2017b. Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory. Mechanics Based Design of Structures and Machines 45 (3):395–405. doi:10.1080/15397734.2016.1231065.
  • Alpay, D., and I. Gohberg. 2006. The state space method generalizations and applications. Birkhäuser Verlag Basel/Switzerland.
  • Bahar, L., and R. Hetnarski. 1978. State space approach to thermoelasticity. Journal of Thermal Stresses 1 (1):135–45. doi:10.1080/01495737808926936.
  • Biot, M. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Chandrasekharaiah, D. S. 1996. A uniqueness theorem in the theory of thermoelasticity without energy dissipation. Journal of Thermal Stresses 19 (3):267–72.
  • Chandrasekharaiah, D. S. 1998. Hyperbolic thermoelasticity: A review of recent literature. Applied Mechanics Reviews 51 (12):705–29.
  • Chirita, S., and M. Ciarletta. 2010. Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mechanics Research Communications 37 (3):271–5. doi:10.1016/j.mechrescom.2010.03.001.
  • Ciarletta, M. 1999. A theory of micropolar thermoelasticity without energy dissipation. Journal of Thermal Stresses 22 (6):581–94. doi:10.1080/014957399280760.
  • El-Karamany, A. S., and M. A. Ezzat. 2011. On the two-temperature Green-Naghdi thermo-elasticity theories. Journal of Thermal Stresses 34 (12):1207–26. doi:10.1080/01495739.2011.608313.
  • El-Karamany, A. S., and M. A. Ezzat. 2016. On the phase- lag Green-Naghdi thermoelasticity theories. Applied Mathematical Modelling 40 (9-10):5643–59. doi:10.1016/j.apm.2016.01.010.
  • Eraslan, A. N., and Y. Orcan. 2004. Thermoplastic response of a linearly hardening cylinder subjected to nonuniform heat source and convective boundary condition. Mechanics Based Design of Structures and Machines 32 (2):133–64.
  • Ezzat, M. A. 2006. The relaxation effects of the volume properties of electrically conducting viscoelastic material. Materials Science and Engineering: B 130 (1-3):11–23. doi:10.1016/j.mseb.2006.01.020.
  • Ezzat, M. A., and M. Z. Abd-Elaal. 1997. State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 77 (3):197–207.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. Samaan. 2001. State-space formulation to generalized thermoviscoelasticity with thermal relaxation. Journal of Thermal Stresses 24 (9):823–46. doi:10.1080/014957301750379612.
  • Ezzat, M. A., M. I. Othman, and A. S. El-Karamany. 2002. State space approach to generalized thermo-viscoelasticity with two relaxation times. International Journal of Engineering Science 40 (3):283–302. doi:10.1016/S0020-7225(01)00045-3.
  • Ezzat, M. A., and H. M. Youssef. 2010. Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties. Canadian Journal of Physics 88 (1):35–48. doi:10.1139/P09-100.
  • Ezzat, M. A. 2011. Thermoelectric MHD with modified Fourier's law. International Journal of Thermal Sciences 50 (4):449–55. doi:10.1016/j.ijthermalsci.2010.11.005.
  • Ezzat, M. A., and M. A. Fayik. 2011. Fractional order theory of thermoelastic diffusion. Journal of Thermal Stresses 34 (8):851–72. doi:10.1080/01495739.2011.586274.
  • Green, A. E., and P. M. Naghdi. 1991. A re-examination of the basic postulates of thermo-mechanics. Proceedings of the Royal Society A 432 (1885):171–94. doi:10.1098/rspa.1991.0012.
  • Green, A. E., and P. M. Naghdi. 1992. On undamped heat waves in an elastic solid. Journal of Thermal Stresses 5 (2):253–64. doi:10.1080/01495739208946136.
  • Green, A. E., and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Hetnarski, R., and J. Ignaczak. 1999. Generalized thermoelasticity. Journal of Thermal Stresses 22 (4-5):451–76.
  • Hiroshige, Y., O. Makoto, and N. Toshima. 2007. Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene. Synthetic Metals 157 (10-12):467–74. doi:10.1016/j.synthmet.2007.05.003.
  • Honig, G., and U. Hirdes. 1984. A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics 10 (1):113–32. doi:10.1016/0377-0427(84)90075-X.
  • Lord, H., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Marin, M. 1997. Cesaro means in thermoelasticity of dipolar bodies. Acta Mechanica 122 (1-4):155–68. doi:10.1007/BF01181996.
  • Marin, M., and A. Öchsner. 2017. The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Continuum Mechanics and Thermodynamics 29 (6):1365–74.
  • Mishra, K. C., J. Sharma, and P. Sharma. 2017. Analysis of vibrations in a non-homogeneous thermoelastic thin annular disk under dynamic pressure. Mechanics Based Design of Structures and Machines 45 (2):207–15.
  • Mukhopadhyay, S., and R. Kumar. 2008. A problem on thermoelastic interactions in an in finite medium with a cylindrical hole in generalized thermoelasticity III. Journal of Thermal Stresses 31 (5):455–75. doi:10.1080/01495730801912561.
  • Nowinski, J. L. 1978. Theory of thermoelasticity with applications. Alphen Aan Den Rijn: Sijthoff & Noordhoff International.
  • Ogata, K. 1967. State space analysis control system. Chapter 6. Englewood Cliffs, NJ: Prentice-Hall.
  • Rowe, D. M. 1995. Handbook of thermoelectrics. Boca Raton, FL: CRC Press.
  • Shercliff, J. A. 1979. Thermoelectric magnetohydrodynamics. Journal of Fluid Mechanics 91 (2):231–51. doi:10.1017/S0022112079000136.
  • Sherief, H. H., and R. S. Dhaliwa. 1980. Uniqueness theorem and a variational principle for generalized thermoelasticity. Journal of Thermal Stresses 3 (2):223–30. doi:10.1080/01495738008926964.
  • Sherief, H. H. 1993. State space formulation for generalized thermoelasticity with one relaxation time including heat sources. Journal of Thermal Stresses 16 (2):163–80.
  • Tritt, T. M. 2000. Semiconductors and semimetals, recent trends in thermoelectric materials research. San Diego, CA: Academic Press.
  • Tritt, T. M., M. G. Kanatzidis, H. B. Lyon, and G. D. Mahanm. 1999. Thermoelectric materials new directions and approaches. Materials Research Society Symposium Proceedings 545 (5):233–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.