426
Views
68
CrossRef citations to date
0
Altmetric
Research Article

Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 707-737 | Received 18 Jul 2019, Accepted 03 Dec 2019, Published online: 27 Dec 2019

References

  • Alibeigloo, A. 2018. Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method. Mechanics of Advanced Materials and Structures 25 (9):766–84. doi:10.1080/15376494.2017.1308585.
  • Alibeigloo, A., and H. Jafarian. 2016. Three-dimensional static and free vibration analysis of carbon nano tube reinforced composite cylindrical shell using differential quadrature method. International Journal of Applied Mechanics 08 (03):1650033. doi:10.1142/S1758825116500332.
  • Alibeigloo, A., and K. M. Liew. 2015. Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method. International Journal of Applied Mechanics 07 (01):1550002. doi:10.1142/S1758825115400025.
  • Arefi, M., and A. H. Soltan Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46: 669–92. doi:10.1080/15397734.2018.1434002.
  • Barati, M. R., and A. M. Zenkour. 2018. Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mechanics of Advanced Materials and Structures 26: 1580–88. doi:10.1080/15376494.2018.1444235.
  • Bunch, J. S., A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. Mceuen. 2007. Electromechanical resonators from graphene sheets. Science 315 (5811):490–3. doi:10.1126/science.1136836.
  • De Villoria, R. G., and A. Miravete. 2007. Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Materialia 55 (9):3025–31. doi:10.1016/j.actamat.2007.01.007.
  • Demirhan, N., and B. Kanber. 2013. Finite element analysis of frictional contacts of fgm coated elastic members. Mechanics Based Design of Structures and Machines 41 (4):383–98. doi:10.1080/15397734.2012.722882.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–37. doi:10.1080/15397734.2017.1329020.
  • Dong, C. 2008. Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Materials & Design 29 (8):1518–25. doi:10.1016/j.matdes.2008.03.001.
  • Dong, Y., Y. Li, D. Chen, and J. Yang. 2018. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi:10.1016/j.compositesb.2018.03.009.
  • Dong, Y., B. Zhu, Y. Wang, Y. Li, and J. Yang. 2018. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load. Journal of Sound and Vibration 437:79–96. doi:10.1016/j.jsv.2018.08.036.
  • Ebrahimi, F., D. Hashemabadi, M. Habibi, and H. Safarpour. 2019. Thermal buckling and forced vibration characteristics of a porous gnp reinforced nanocomposite cylindrical shell. Microsystem Technologies 1–13. doi:10.1007/s00542-019-04542-9.
  • Feng, C., S. Kitipornchai, and J. Yang. 2017. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (gpls). Engineering Structures 140:110–9. doi:10.1016/j.engstruct.2017.02.052.
  • Gao, K., W. Gao, D. Chen, and J. Yang. 2018. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Composite Structures 204:831–46. doi:10.1016/j.compstruct.2018.08.013.
  • Gao, Y., and P. Hao. 2009. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E: Low-Dimensional Systems and Nanostructures 41 (8):1561–6.
  • Ghorbanpour Arani, A., M. Khani, and Z. Khoddami Maraghi. 2018. Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory. Journal of Vibration and Control 24 (16):3698–713. doi:10.1177/1077546317709388.
  • Gibson, I., and M. F. Ashby. 1982. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382 (1782):43–59. doi:10.1098/rspa.1982.0088.
  • Gibson, L. J., and M. F. Ashby. 1999. Cellular solids: Structure and properties. Cambridge: Cambridge University Press.
  • Guo, H., S. Cao, T. Yang, and Y. Chen. 2018. Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. International Journal of Mechanical Sciences 142:610–21. doi:10.1016/j.ijmecsci.2018.05.029.
  • Habibi, M., D. Hashemabadi, and H. Safarpour. 2019. Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. The European Physical Journal Plus 134 (6):307. doi:10.1140/epjp/i2019-12742-7.
  • Habibi, M., M. Mohammadgholiha, and H. Safarpour. 2019. Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (5):221. doi:10.1007/s40430-019-1743-6.
  • Habibi, M., A. Taghdir, and H. Safarpour. 2019. Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Composites Part B: Engineering 175:107125. doi:10.1016/j.compositesb.2019.107125.
  • Ishai, O., and L. Cohen. 1967. Elastic properties of filled and porous epoxy composites. International Journal of Mechanical Sciences 9 (8):539–46. doi:10.1016/0020-7403(67)90053-7.
  • Kang, J.-H. 2017. Axisymmetric vibration of rotating annular plate with variable thickness subjected to tensile centrifugal body force. International Journal of Structural Stability and Dynamics 17 (09):1750101. doi:10.1142/S0219455417501012.
  • Karimiasl, M., F. Ebrahimi, and V. Mahesh. 2019. Nonlinear free and forced vibration analysis of multiscale composite doubly curved shell embedded in shape-memory alloy fiber under hygrothermal environment. Journal of Vibration and Control 25: 1945–57. doi:10.1177/1077546319842426.
  • Karimiasl, M., F. Ebrahimi, and M. Vinyas. 2019. Nonlinear vibration analysis of multiscale doubly curved piezoelectric composite shell in hygrothermal environment. Journal of Intelligent Material Systems and Structures 30 (10):1594–609. doi:10.1177/1045389X19835956.
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Kitipornchai, S., X. He, and K. Liew. 2005. Continuum model for the vibration of multilayered graphene sheets. Physical Review B 72 (7):075443. doi:10.1103/PhysRevB.72.075443.
  • Larbi, L. O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams#. Mechanics Based Design of Structures and Machines 41 (4):421–33. doi:10.1080/15397734.2013.763713.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, H., F. Pang, H. Chen, and Y. Du. 2019. Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Composites Part B: Engineering 164:249–64. doi:10.1016/j.compositesb.2018.11.046.
  • Li, H., F. Pang, Q. Gong, and Y. Teng. 2019. Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method. Composite Structures 225:111145. doi:10.1016/j.compstruct.2019.111145.
  • Li, H., F. Pang, Y. Li, and C. Gao. 2019. Application of first-order shear deformation theory for the vibration analysis of functionally graded doubly-curved shells of revolution. Composite Structures 212:22–42. doi:10.1016/j.compstruct.2019.01.012.
  • Li, H., F. Pang, Y. Ren, X. Miao, and K. Ye. 2019. Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin-Walled Structures 144:106331. doi:10.1016/j.tws.2019.106331.
  • Li, K., D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, and M. Liu. 2018. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Composite Structures 204:114–30. doi:10.1016/j.compstruct.2018.07.059.
  • Li, Q., D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao. 2018. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. International Journal of Mechanical Sciences 148:596–610. doi:10.1016/j.ijmecsci.2018.09.020.
  • Lin, H. G., D. Q. Cao, and Y. Q. Xu. 2018. Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers. International Journal of Applied Mechanics 10 (03):1850023. doi:10.1142/S1758825118500230.
  • Mahdavi, M. H., L. Jiang, and X. Sun. 2012. Nonlinear free vibration analysis of an embedded double layer graphene sheet in polymer medium. International Journal of Applied Mechanics 04 (04):1250039. doi:10.1142/S1758825112500391.
  • Malekzadeh, P., A. Setoodeh, and M. Shojaee. 2018. Vibration of FG-GPLS eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Computer Methods in Applied Mechanics and Engineering 340:451–79. doi:10.1016/j.cma.2018.06.006.
  • Mao, J.-J., L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang. 2018. Thermoelastic instability of functionally graded materials with interaction of frictional heat and contact resistance. Mechanics Based Design of Structures and Machines 46 (2):139–56. doi:10.1080/15397734.2017.1319283.
  • Meng, X., M. Li, Y. Xing, and Z. Bai. 2014. A mechanical model for self-assembled graphene around nanotube. International Journal of Applied Mechanics 06 (04):1450036. doi:10.1142/S1758825114500367.
  • Mercan, K., A. K. Baltacıoglu, and Ö. Civalek. 2018. Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method. Composite Structures 186:139–53. doi:10.1016/j.compstruct.2017.12.008.
  • Mohammadgholiha, M., A. Shokrgozar, M. Habibi, and H. Safarpour. 2019. Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. Journal of Vibration and Control 25 (19–20):2627–40. doi:10.1177/1077546319863251.
  • Mohammadi, A., H. Lashini, M. Habibi, and H. Safarpour. 2019. Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. Journal of Solid Mechanics 11 (2):440–53.
  • Montazeri, A., and H. Rafii-Tabar. 2011. Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Physics Letters A 375 (45):4034–40. doi:10.1016/j.physleta.2011.08.073.
  • Potts, J. R., D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff. 2011. Graphene-based polymer nanocomposites. Polymer 52 (1):5–25. doi:10.1016/j.polymer.2010.11.042.
  • Rafiee, M. A., J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar. 2010. Fracture and fatigue in graphene nanocomposites. Small 6 (2):179–83. doi:10.1002/smll.200901480.
  • Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar. 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3 (12):3884–90. doi:10.1021/nn9010472.
  • Reddy, J., C. Wang, and S. Kitipornchai. 1999. Axisymmetric bending of functionally graded circular and annular plates. European Journal of Mechanics - A/Solids 18 (2):185–99. doi:10.1016/S0997-7538(99)80011-4.
  • Safarpour, H., J. Pourghader, and M. Habibi. 2019. Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. Journal of Vibration and Control 25 (9):1543–57. doi:10.1177/1077546319828465.
  • Safarpour, M., A. Rahimi, and A. Alibeigloo. 2019. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 1–29. doi:10.1080/15397734.2019.1646137.
  • Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi. 2019. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLS). Mechanics Based Design of Structures and Machines 1–22. doi:10.1080/15397734.2019.1666723.
  • Shu, C., and B. E. Richards. 1992. Application of generalized differential quadrature to solve two‐dimensional incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 15 (7):791–8. doi:10.1002/fld.1650150704.
  • Sobhy, M. 2014. Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions. Acta Mechanica 225 (9):2521–38. doi:10.1007/s00707-014-1093-5.
  • Sobhy, M. 2015. Levy-type solution for bending of single-layered graphene sheets in thermal environment using the two-variable plate theory. International Journal of Mechanical Sciences 90:171–8. doi:10.1016/j.ijmecsci.2014.11.014.
  • Sofiyev, A., D. Hui, A. Valiyev, F. Kadioglu, S. Turkaslan, G. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Tajeddini, V., A. Ohadi, and M. Sadighi. 2011. Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation. International Journal of Mechanical Sciences 53 (4):300–8. doi:10.1016/j.ijmecsci.2011.01.011.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37–40):2911–35. doi:10.1016/j.cma.2009.04.011.
  • Tufekci, E., U. Eroglu, and S. A. Aya. 2016. Exact solution for in-plane static problems of circular beams made of functionally graded materials. Mechanics Based Design of Structures and Machines 44 (4):476–94. doi:10.1080/15397734.2015.1121398.
  • Wang, X., X. Liang, and C. Jin. 2017. Accurate dynamic analysis of functionally graded beams under a moving point load. Mechanics Based Design of Structures and Machines 45 (1):76–91. doi:10.1080/15397734.2016.1145060.
  • Wang, Y., C. Feng, Z. Zhao, and J. Yang. 2018. Buckling of graphene platelet reinforced composite cylindrical shell with cutout. International Journal of Structural Stability and Dynamics 18 (03):1850040. doi:10.1142/S0219455418500402.
  • Wu, H., and L. T. Drzal. 2014. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite. Materials Chemistry and Physics 146 (1–2):26–36. doi:10.1016/j.matchemphys.2014.02.038.
  • Xie, S., Y. Liu, and J. Li. 2008. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Applied Physics Letters 92 (24):243121. doi:10.1063/1.2949074.
  • Xue, Y., G. Jin, X. Ma, H. Chen, T. Ye, M. Chen, and Y. Zhang. 2019. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. International Journal of Mechanical Sciences 152:346–62. doi:10.1016/j.ijmecsci.2019.01.004.
  • Yang, B., S. Kitipornchai, Y.-F. Yang, and J. Yang. 2017. 3d thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Applied Mathematical Modelling 49:69–86. doi:10.1016/j.apm.2017.04.044.
  • Yang, B., J. Yang, and S. Kitipornchai. 2017. Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3d elasticity. Meccanica 52 (10):2275–92. doi:10.1007/s11012-016-0579-8.
  • Yang, C., G. Jin, W. Xu, and Z. Liu. 2016. A modified Fourier solution for free damped vibration analysis of sandwich viscoelastic-core conical shells and annular plates with arbitrary restraints. International Journal of Applied Mechanics 08 (08):1650094. doi:10.1142/S1758825116500940.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–94. doi:10.1016/j.compstruct.2018.03.090.
  • Yuda, H., and Z. Xiaoguang. 2011. Parametric vibrations and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines 39 (3):367–77. doi:10.1080/15397734.2011.557970.
  • Yun, W., X. Rongqiao, and D. Haojiang. 2010. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Composite Structures 92 (7):1683–93. doi:10.1016/j.compstruct.2009.12.002.
  • Zhou, Z., Y. Ni, Z. Tong, S. Zhu, J. Sun, and X. Xu. 2019. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. International Journal of Mechanical Sciences 151:537–50. doi:10.1016/j.ijmecsci.2018.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.