236
Views
4
CrossRef citations to date
0
Altmetric
Articles

Design and analysis of an active 2-DOF lockable joint

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2736-2759 | Received 25 Feb 2020, Accepted 15 Jun 2020, Published online: 29 Jun 2020

References

  • Bi, Z. M., and B. Kang. 2010. Enhancement of adaptability of parallel kinematic machines with an adjustable platform. Journal of Manufacturing Science and Engineering 132 (6) 061016. doi:https://doi.org/10.1115/1.4003120.
  • Bi, Z. M., and L. Wang. 2009. Optimal design of reconfigurable parallel machining systems. Robotics and Computer-Integrated Manufacturing 25 (6):951–61. doi:https://doi.org/10.1016/j.rcim.2009.04.004.
  • Birglen, L., C. Gosselin, N. Pouliot, B. Monsarrat, and T. Laliberté. 2002. SHaDe, a new 3-dof haptic device. IEEE Transactions on Robotics and Automation 18 (2):166–75. doi:https://doi.org/10.1109/TRA.2002.999645.
  • Borras, J., F. Thomas, E. Ottaviano, and M. Ceccarelli. 2009. A reconfigurable 5-DoF 5-SPU parallel platform. ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, 617–23.
  • Chablat, D., and P. Wenger. 2005. A new six degree-of-freedom haptic device based on the orthoglide and the agile eye. Proceedings of Virtual Concept.
  • Chen, I. M. 2001. Rapid response manufacturing through a rapidly reconfigurable robotic work cell. Robotics and Computer-Integrated Manufacturing 17 (3):199–213. doi:https://doi.org/10.1016/S0736-5845(00)00028-4.
  • Dios Flores-Mendez, J., H. Schioler, O. Madsen, and S. Bai. 2018.Design of a dynamically reconfigurable 3T1R parallel kinematic manipulator. International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, 1–8. doi:https://doi.org/10.1109/REMAR.2018.8449861.
  • Gan, D., J. S. Dai, and Q. Liao. 2009. Mobility change in two types of metamorphic parallel mechanisms. Journal of Mechanisms and Robotics 1 (4): 041007-1–041007-9. doi:https://doi.org/10.1115/1.3211023.
  • Gan, D., J. Dias, and L. Seneviratne. 2016. Unified kinematics and optimal design of a 3rRPS metamorphic parallel mechanism with a reconfigurable revolute joint. Mechanism and Machine Theory 96:239–54. doi:https://doi.org/10.1016/j.mechmachtheory.2015.08.005.
  • Gosselin, C. M. 1990. Dexterity indices for planar and spatial robotic manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, vol. 1, 650–55. doi:https://doi.org/10.1109/ROBOT.1990.126057.
  • Grosch, P., R. D. Gregorio, J. López, and F. Thomas. 2010. Motion planning for a novel reconfigurable parallel manipulator with lockable revolute joints. IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 4697–702.
  • Halverson, P. A., L. Howell, and S. Magleby. 2010. Tension-based multi-stable compliant rolling-contact elements. Mechanism and Machine Theory 45 (2):147–56. doi:https://doi.org/10.1016/j.mechmachtheory.2008.11.013.
  • Han, Y. M., J. S. Oh, S. Kim, and S. B. Choi. 2017. Design of multi-degree motion haptic mechanisms using smart fluid-based devices. Mechanics Based Design of Structures and Machines 45 (1):135–44. doi:https://doi.org/10.1080/15397734.2015.1132629.
  • Hwang, Y. H., S. R. Kang, S. W. Cha, and S. B. Choi. 2016. An electrorheological spherical joint actuator for a haptic master with application to robot-assisted cutting surgery. Sensors and Actuators A: Physical 249:163–71. doi:https://doi.org/10.1016/j.sna.2016.08.033.
  • Ibarreche, J. I., A. Hernández, V. Petuya, and M. Urízar. 2019. A methodology to achieve the set of operation modes of reconfigurable parallel manipulators. Meccanica 54 (15):2507–20. doi:https://doi.org/10.1007/s11012-019-01081-5.
  • Kuo, C. H., J. Dai, and H. S. Yan. 2009. Reconfiguration principles and strategies for reconfigurable mechanisms. ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR), London, United Kingdom, 1–7.
  • Li, R., J. Zhao, D. Fan, S. Liang, S. Song, and S. Bai. 2018. Design and workspace analysis of reconfigurable 3-RPRP spherical parallel mechanisms. International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, 1–8. doi:https://doi.org/10.1109/REMAR.2018.8449856.
  • Nansai, S., N. Rojas, M. Elara, and R. Sosa. 2013.Exploration of adaptive gait patterns with a reconfigurable linkage mechanism. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 4661–68.
  • Palmieri, G., M. Callegari, L. Carbonari, and M. C. Palpacelli. 2015. Mechanical design of a mini pointing device for a robotic assembly cell. Meccanica 50 (7):1895–908. doi:https://doi.org/10.1007/s11012-015-0132-1.
  • Palpacelli, M., L. Carbonari, G. Palmieri, and M. Callegari. 2015. Analysis and design of a reconfigurable 3-DoF parallel manipulator for multimodal tasks. IEEE/ASME Transactions on Mechatronics 20 (4):1975–85. doi:https://doi.org/10.1109/TMECH.2014.2365616.
  • Palpacelli, M., L. Carbonari, G. Palmieri, and M. Callegari. 2018. Design of a lockable spherical joint for a reconfigurable 3-URU parallel platform. Robotics 7 (3):42. doi:https://doi.org/10.3390/robotics7030042.
  • Pandey, V., and T. V. Hariskrishna. 2018. Novel contact-type actuated sphere for powered prosthetic-ankle joint. Procedia Computer Science 133:181–89. doi:https://doi.org/10.1016/j.procs.2018.07.022.
  • Riabtsev, M., V. Petuya, A. Riera, and E. Macho. 2019. Design of an active reconfigurable 2R joint. Proceedings of the 15th International Federation for the Promotion of Mechanism and Machine Science (IFToMM) World Congress, Krakov, 1423–29.
  • Salisbury, C., R. B. Gillespie, H. Z. Tan, F. Barbagli, and J. K. Salisbury. 2011. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function. IEEE Transactions on Haptics 4 (2):134–46. doi:https://doi.org/10.1109/TOH.2011.5.
  • Song, B. K., S. R. Kang, S. W. Cha, Y. H. Hwang, J. S. Oh, and S. B. Choi. 2018. Design of a novel 6-DOF haptic master mechanism using MR clutches and gravity compensator. Mechanics Based Design of Structures and Machines 46 (6):767–80. doi:https://doi.org/10.1080/15397734.2018.1469094.
  • Wang, Q. H., S. C. Wu, J. W. Liu, and J. R. Li. 2018. Design of a 6-DOF force device for virtual assembly (FDVA-6) of mechanical parts. Mechanics Based Design of Structures and Machines 46 (5):567–77. doi:https://doi.org/10.1080/15397734.2017.1372204.
  • Wang, W., H. Zhang, G. Zong, and Z. Deng. 2008. A reconfigurable mobile robots system based on parallel mechanism. In Parallel manipulators. Towards new applications, ed. H. Wu, 506. Vienna, Austria: I-Tech Education and Publishing.
  • Wei, J., and J. S. Dai. 2018. Group method for synthesis of metamorphic parallel mechanism with 1R2T and 2R1T reconfiguration. International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, 1–6. doi:https://doi.org/10.1109/REMAR.2018.8449843.
  • Wei, Y., Y. Fang, and S. Guo. 2015.Reconfigurable parallel mechanisms with three types of kinematotropic chains. Proceedings of the 14th International Federation for the Promotion of Mechanism and Machine Science (IFToMM) World Congress, Taipei, Taiwan, vol. 74, 1–9.
  • Wohlhart, K. 1996. Kinematotropic linkages. In Recent advances in robot kinematics, ed. J. Lenarčič and V. Parenti-Castelli, 359–68. Dordrecht: Springer.
  • Wu, G., H. Dong, D. Wang, and S. Bai. 2018.A 3-RRR spherical parallel manipulator reconfigured with four-bar linkages. International Conference on Reconfigurable Mechanisms and Robots (ReMAR), Delft, 1–7. doi:https://doi.org/10.1109/REMAR.2018.8449887.
  • Yan, H. S., and C. H. Kuo. 2006. Topological representations and characteristics of variable kinematic joints. Journal of Mechanical Design 128 (2):384–91. doi:https://doi.org/10.1115/1.2166854.
  • Yu, Y., Y. Narita, Y. Harada, and T. Nakao. 2009. Research of 3-DOF active rotational ball joint. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, 5153–58. doi:https://doi.org/10.1109/IROS.2009.5354127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.