109
Views
2
CrossRef citations to date
0
Altmetric
Articles

A study on the frame of a memory-dependent derivative in a micropolar thermoelastic medium under the effect of the variable thermal conductivity

Pages 665-681 | Received 10 Jan 2020, Accepted 11 Nov 2020, Published online: 28 Nov 2020

References

  • Abbas, I. A. 2014. Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties. Computers & Mathematics with Applications 68 (12):2036–56. doi:10.1016/j.camwa.2014.09.016.
  • Abbas, I. A. 2015. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mechanics Based Design of Structures and Machines 43 (4):501–13. doi:10.1080/15397734.2015.1029589.
  • Abbas, I. A. 2017. Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory. Mechanics Based Design of Structures and Machines 45 (3):395–405. doi:10.1080/15397734.2016.1231065.
  • Abbas, I. A., A. N. Abd-Alla, and M. I. A. Othman. 2011. Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic halfspace. International Journal of Thermophysics 32 (5):1071–85. doi:10.1007/s10765-011-0957-3.
  • Abbas, I. A., and M. Marin. 2017. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E: Low-Dimensional Systems and Nanostructures 87:254–60. doi:10.1016/j.physe.2016.10.048.
  • Biot, M. A. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Biswas, S. 2019a. Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity. Mechanics Based Design of Structures and Machines 47 (4):430–52. doi:10.1080/15397734.2018.1557528.
  • Biswas, S. 2019b. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–18. doi:10.1080/15397734.2018.1548968.
  • Caputo, M. 1974. Vibrations on an infinite viscoelastic layer with a dissipative memory. The Journal of the Acoustical Society of America 56 (3):897–904. doi:10.1121/1.1903344.
  • Caputo, M., and F. Mainardi. 1971a. A new dissipation model based on memory mechanism. Pure and Applied Geophysics (PAGEOPH) 91 (1):134–47. doi:10.1007/BF00879562.
  • Caputo, M., and F. Mainardi. 1971b. Linear model of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1 (2):161–98. doi:10.1007/BF02820620.
  • Dogonchi, A. S., and D. D. Ganji. 2016. Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Applied Thermal Engineering 103 (C):705–12. doi:10.1016/j.applthermaleng.2016.04.121.
  • Eringen, A. C. 1990. Theory of thermo-microstretch elastic solids. International Journal of Engineering Science 28 (12):1291–301. doi:10.1016/0020-7225(90)90076-U.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2015. A novel magneto-thermoelasticity theory with memory-dependent derivative. Journal of Electromagnetic Waves and Applications 29 (8):1018–31. doi:10.1080/09205071.2015.1027795.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • He, T., P. Zhang, C. Xu, and Y. Li. 2019. Transient response analysis of a spherical shell embedded in an infinite thermoelastic medium based on a memory-dependent generalized thermoelasticity. Journal of Thermal Stresses 42 (8):943–61. doi:10.1080/01495739.2019.1610342.
  • Liu, K. C., and P. J. Cheng. 2006. Numerical analysis for dual-phase-lag heat conduction in layered films. Numerical Heat Transfer: Part A: Applications 49 (6):589–606. doi:10.1080/10407780500436865.
  • Lord, H. W., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Ma, Y., and T. He. 2016. Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures 23 (10):1173–80. doi:10.1080/15376494.2015.1068397.
  • Ma, Y., and T. He. 2017. The transient response of a functionally graded piezoelectric rod subjected to a moving heat source under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures 24 (9):789–96. doi:10.1080/15376494.2016.1196783.
  • Ma, Y., and T. He. 2019. Investigation on a thermo-piezoelectric problem with temperature-dependent properties under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures 26 (6):552–8. doi:10.1080/15376494.2017.1410899.
  • Ma, Y., Z. Liu, and T. He. 2018. A two-dimensional electromagneto-thermoelastic coupled problem under fractional order theory of thermoelasticity. Journal of Thermal Stresses 41 (5):645–57. doi:10.1080/01495739.2017.1422824.
  • Mondal, S., N. Sarkar, and N. Sarkar. 2019. Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. Journal of Thermal Stresses 42 (8):1035–50. doi:10.1080/01495739.2019.1591249.
  • Ordonez-Miranda, J., and J. J. Alvarado-Gil. 2011. On the stability of the exact solutions of the dual-phase lagging model of heat conduction. Nanoscale Research Letters 6 (1):327. doi:10.1186/1556-276X-6-327.
  • Othman, M. I. A., A. E. Abouelregal, and S. M. Said. 2019. The effect of variable thermal conductivity on an infinite fiber-reinforced thick plate under initial stress. Journal of Mechanics of Materials and Structures 14 (2):277–93. doi:10.2140/jomms.2019.14.277.
  • Said, S. M. 2019. Effects of phase-lags, rotation, and temperature-dependent properties on plane waves in a magneto-microstretch thermoelastic medium. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1693898.
  • Schoenberg, M., and D. C. Censor. 1973. Elastic waves in rotating media. Quarterly of Applied Mathematics 31 (1):115–25. doi:10.1090/qam/99708.
  • Sherief, H. H., and A. M. Abd El-Latief. 2015. A one-dimensional fractional order thermoelastic problem for a spherical cavity. Mathematics and Mechanics of Solids 20 (5):512–21. doi:10.1177/1081286513505585.
  • Singh, S., D. Kumar, and K. N. Rai. 2014. Convective-radiative fin with temperature-dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity. Propulsion and Power Research 3 (4):207–21. doi:10.1016/j.jppr.2014.11.003.
  • Sur, A., and M. Kanoria. 2012. Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mechanica 223 (12):2685–701. doi:10.1007/s00707-012-0736-7.
  • Tzou, D. Y. 1995. Experimental support for the lagging response in heat propagation. Journal of Thermophysics and Heat Transfer 9 (4):686–93. doi:10.2514/3.725.
  • Tzou, D. Y. 1996. Macro-to microscale heat transfer: The lagging behavior. Washington, DC: Taylor & Francis.
  • Wang, J. L., and H. F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–7. doi:10.1016/j.camwa.2011.04.028.
  • Xiong, C., and G. Ying. 2017. Electromagneto-thermoelastic diffusive plane waves in a half-space with variable material properties under fractional order thermoelastic diffusion. International Journal of Applied Electromagnetics and Mechanics 53 (2):251–69. doi:10.3233/JAE-160038.
  • Youssef, H. M. 2005. State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating. The Canadian AppliedMathematics Quarterly 13 (4):369–90.
  • Youssef, H. M. 2010. Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer 132 (6):61301. doi:10.1115/1.4000705.
  • Youssef, H. M., and A. A. El-Bary. 2006. Mathematical model for thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Computational Methods in Science and Technology 12 (2):165–71. doi:10.12921/cmst.2006.12.02.165-171.
  • Yu, Y., W. Hu, and X. Tian. 2014. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–34. doi:10.1016/j.ijengsci.2014.04.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.