123
Views
8
CrossRef citations to date
0
Altmetric
Articles

Influence of gravity, magnetic field, and thermal shock on mechanically loaded rotating FGDPTM structure under Green-Naghdi theory

, ORCID Icon &
Pages 764-792 | Received 27 Aug 2020, Accepted 17 Nov 2020, Published online: 15 Dec 2020

References

  • Abbas, I. A., and A. M. Zenkour. 2013. LS model on electro–magneto–thermoelastic response of an infinite functionally graded cylinder. Composite Structures 96:89–96. doi:10.1016/j.compstruct.2012.08.046.
  • Abdou, M. A., M. I. Othman, R. S. Tantawi, and N. T. Mansour. 2018. Effect of rotation and gravity on generalized thermoelastic medium with double porosity under LS theory. Journal of Materials Science and Nanotechnology 6 (3):304.
  • Abdou, M. A., M. I. Othman, R. S. Tantawi, and N. T. Mansour. 2020. Exact solutions of generalized thermoelastic medium with double porosity under L–S theory. Indian Journal of Physics 94 (5):725–36. doi:10.1007/s12648-019-01505-8.
  • Atwa, S. Y. 2014. Generalized magneto-thermoelasticity with two temperature and initial stress under Green–Naghdi theory. Applied Mathematical Modelling 38 (21-22):5217–30. doi:10.1016/j.apm.2014.04.023.
  • Biot, M. A. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Biswas, S. 2019. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–18. doi:10.1080/15397734.2018.1548968.
  • Biswas, S., and S. M. Abo-Dahab. 2020. Electro–magneto–thermoelastic interactions in initially stressed orthotropic medium with Green–Naghdi model type-III. Mechanics Based Design of Structures and Machines :1–16. doi:10.1080/15397734.2020.1815212.
  • Chen, P. J., and M. E. Gurtin. 1968. On a theory of heat conduction involving two-temperatures. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 19 (4):614–27. doi:10.1007/BF01594969.
  • Chen, P. J., M. E. Gurtin, and W. O. Williams. 1968. A note on non-simple heat conduction. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 19 (6):969–70. doi:10.1007/BF01602278.
  • Chen, P. J., M. E. Gurtin, and W. O. Williams. 1969. On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 20 (1):107–12. doi:10.1007/BF01591120.
  • Cowin, S. C., and J. W. Nunziato. 1983. Linear elastic materials with voids. Journal of Elasticity 13 (2):125–47. doi:10.1007/BF00041230.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • Green, A. E., and P. M. Naghdi. 1991. A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society London A 432 (1885):171–94. doi:10.1098/rspa.1991.0012.
  • Green, A. E., and P. M. Naghdi. 1992. On undamped heat waves in an elastic solid. Journal of Thermal Stresses 15 (2):253–64. doi:10.1080/01495739208946136.
  • Green, A. E., and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Gunghas, A., R. Kumar, S. Deswal, and K. K. Kalkal. 2019. Influence of rotation and magnetic fields on a functionally graded thermoelastic solid subjected to a mechanical load. Journal of Mathematics 2019:1–16. doi:10.1155/2019/1016981.
  • Gunghas, A., S. Kumar, D. Sheoran, and K. K. Kalkal. 2020. Thermo-mechanical interactions in a functionally graded elastic material with voids and gravity field. International Journal of Mechanics and Materials in Design 16 (4):767–82. doi:10.1007/s10999-020-09501-1.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020a. Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures 235:111707. doi:10.1016/j.compstruct.2019.111707.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020b. Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers. Applied Sciences 10 (4):1397. doi:10.3390/app10041397.
  • Iesan, D. 1986. A theory of thermoelastic material with voids. Acta Mechanica 60 (1-2):67–89. doi:10.1007/BF01302942.
  • Iesan, D. 2004. Thermoelastic models of continua. Dordrecht: Kluwer Academic.
  • Ieşan, D., and R. Quintanilla. 2014. On the theory of thermoelastic materials with a double porosity structure. Journal of Thermal Stresses 37 (9):1017–36. doi:10.1080/01495739.2014.914776.
  • Kalkal, K. K., A. Gunghas, and S. Deswal. 2020. Two-dimensional magneto-thermoelastic interactions in a micropolar functionally graded solid. Mechanics Based Design of Structures and Machines 48 (3):348–69. doi:10.1080/15397734.2019.1652100.
  • Khalili, N. 2003. Coupling effects in double porosity media with deformable matrix. Geophysical Research Letters 30 (22):2153. doi:10.1029/2003GL018544.
  • Kraus, J. D. 1984. Electromagnetics. New York, NY: McGraw-Hill Inc.
  • Lord, H. W., and Y. A. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Mashat, D. S., and A. M. Zenkour. 2020. Modified DPL Green–Naghdi theory for thermoelastic vibration of temperature-dependent nanobeams. Results in Physics 16:102845. doi:10.1016/j.rinp.2019.102845.
  • Nunziato, J. W., and S. C. Cowin. 1979. A nonlinear theory of elastic materials with voids. Archive for Rational Mechanics and Analysis 72 (2):175–201. doi:10.1007/BF00249363.
  • Othman, M. I., and E. E. Eraki. 2017. Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines 45 (2):145–59. doi:10.1080/15397734.2016.1152193.
  • Puri, P., and S. C. Cowin. 1985. Plane waves in linear elastic materials with voids. Journal of Elasticity 15 (2):167–83. doi:10.1007/BF00041991.
  • Sarkar, N., and A. Lahiri. 2013. The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under Lord-Shulman theory. Journal of Thermal Stresses 36 (9):895–914. doi:10.1080/01495739.2013.770709.
  • Sherief, H. H., and H. A. Saleh. 2005. A half space problem in the theory of generalized thermoelastic diffusion. International Journal of Solids and Structures 42 (15):4484–93. doi:10.1016/j.ijsolstr.2005.01.001.
  • Sobhy, M., and A. M. Zenkour. 2020. Modified three-phase-lag Green–Naghdi models for thermomechanical waves in an axisymmetric annular disk. Journal of Thermal Stresses 43 (8):1017–29. doi:10.1080/01495739.2020.1766390.
  • Sur, A., and M. Kanoria. 2020. Memory response on thermal wave propagation in an elastic solid with voids. Mechanics Based Design of Structures and Machines 48 (3):326–47. doi:10.1080/15397734.2019.1652647.
  • Tornabene, F. 2019. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures 140:85–98. doi:10.1016/j.tws.2019.03.018.
  • Zenkour, A. M. 2014. On the magneto-thermo-elastic responses of FG annular sandwich disks. International Journal of Engineering Science 75:54–66. doi:10.1016/j.ijengsci.2013.11.001.
  • Zenkour, A. M. 2016. Free vibration of a microbeam resting on Pasternak’s foundation via the Green–Naghdi thermoelasticity theory without energy dissipation. Journal of Low Frequency Noise, Vibration and Active Control 35 (4):303–11. doi:10.1177/0263092316676405.
  • Zenkour, A. M. 2020a. Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green-Naghdi model. Journal of Ocean Engineering and Science 5 (3):214–22. doi:10.1016/j.joes.2019.12.001.
  • Zenkour, A. M. 2020b. Thermo-diffusion of a thick circular plate via modified Green-Naghdi models. Archives of Mechanics 72 (3):235–56. doi:10.24423/aom.3533.
  • Zenkour, A. M. 2020c. Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model. Journal of Physics and Chemistry of Solids 137:109213. doi:10.1016/j.jpcs.2019.109213.
  • Zenkour, A. M., and I. A. Abbas. 2014. Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method. Journal of Vibration and Control 20 (12):1907–19. doi:10.1177/1077546313480541.
  • Zenkour, A. M., and I. A. Abbas. 2015. Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation. Journal of Magnetism and Magnetic Materials 395:123–9. doi:10.1016/j.jmmm.2015.07.038.
  • Zenkour, A. M., and A. E. Abouelregal. 2016. Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat. Earthquakes and Structures 10 (3):681–97. doi:10.12989/eas.2016.10.3.681.
  • Zenkour, A. M., and D. S. Mashat. 2020. A laser pulse impactful on a half-space using the modified TPL G–N models. Scientific Reports 10 (1):1–12. doi:10.1038/s41598-020-61249-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.