168
Views
4
CrossRef citations to date
0
Altmetric
Articles

Wave reflection by the free boundary of a microstructured flexoelectric half-space

ORCID Icon &
Pages 793-815 | Received 29 Aug 2020, Accepted 17 Nov 2020, Published online: 11 Dec 2020

References

  • Achenbach, J. 1973. Wave propagation in elastic solids. North Holland, Netherlands: Elsevier.
  • Alshaikh, F. 2020. Effect of primary magnetic intensity and rotation on wave propagation in generalized thermo-piezoelectric anisotropic smart materials. Mechanics Based Design of Structures and Machines. doi:10.1080/1539774.2020.1801465.
  • Alshits, V. I., A. N. Darinsky, and A. L. Shuvalov. 1989. Theory of reflection of acoustoelec-tric waves in semi-infinite piezoelectric medium. 1. Metallized surface. Kristallografiya 34 (6):1340–8.
  • Abd-Alla, A. N., A. M. Hamdan, I. Giorgio, and D. Del Vescovo. 2014. The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Archive of Applied Mechanics 84 (9–11):1229–48. doi:10.1007/s00419-014-0852-z.
  • Abd-Alla, A. N., I. Giorgio, L. Galantucci, A. M. Hamdan, and D. D. Vescovo. 2016. Wave reflection at a free interface in an anisotropic pyroelectric medium with non-classicalthermoelasticity. Continuum Mechanics and Thermodynamics 28 (1–2):67–84. doi:10.1007/s00161-014-0400-7.
  • Catalan, G., A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda. 2011. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Materials 10 (12):963–7. doi:10.1038/nmat3141.
  • Fousek, J., L. E. Cross, and D. B. Litvin. 1999. Possible piezoelectric composites based on the flexoelectric effect. Materials Letters 39 (5):287–91. doi:10.1016/S0167-577X(99)000208.
  • Georgiadis, H. G., I. Vardoulakis, and E. G. Velgaki. 2004. Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. Journal of Elasticity 74 (1):17–45. doi:10.1023/B:ELAS.0000026094.95688.c5.
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2019. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 1–19. doi:10.1080/153974.2019.1697932.
  • Hu, T. T., W. Yang, X. Liang, and S. Shen. 2018. Wave propagation in flexoelectric microstructured solids. Journal of Elasticity 130 (2):197–210. doi:10.1007/s10659-017-9636-3.
  • Huang, S., L. Qi, W. Huang, L. Shu, S. Zhou, and X. Jiang. 2018. Flexoelectricity in dielectrics: Materials, structures and characterizations. Journal of Advanced Dielectrics 08 (02):1830002. doi:10.1142/S2010135X18300025.
  • Janno, J., and J. Engelbrecht. 2005. Waves in microstructured solids: Inverse problems. Wave Motion 43 (1):1–11. doi:10.1016/j.wavemoti.2005.04.006.
  • Jiao, F. Y., P. J. Wei, and Y. Q. Li. 2019. Wave propagation in piezoelectric medium with the flexoelectric effect considered. Journal of Mechanics 35 (1):51–63. doi:10.1017/jmech.2017.87.
  • Kogan, S. M. 1964. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers. Soviet Physics-Solid State 5 (10):2069–70.
  • Krichen, S., and P. Sharma. 2016. Flexoelectricity: A perspective on an unusual electro-mechanical coupling. Journal of Applied Mechanics 83 (3):030801. doi:10.1115/1.4032378.
  • Liu, C., S. Hu, and S. Shen. 2014. Effect of flexoelectricity on band structures of one dimensional phononic crystals. Journal of Applied Mechanics 81 (5):051007. doi:10.1115/1.4026017.
  • Ma, W., and L. E. Cross. 2001. Large flexoelectric polarization in ceramic lead magnesium niobate. Applied Physics Letters 79 (26):4420–2. doi:10.1063/1.1426690.
  • Maranganti, R., N. D. Sharma, and P. Sharma. 2006. Electromechanical coupling in non-piezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Physical Review B 74 (1):014110. doi:10.1103/PhysRevB.74.014110.
  • Mindlin, R. D. 1964. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16 (1):51–78. doi:10.1007/BF00248490.
  • Mindlin, R. D. 1965. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures 1 (4):417–38. doi:10.1016/0020-7683(65)900065.
  • Mindlin, R. D., and N. N. Eshel. 1968. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures 4 (1):109–24. doi:10.1016/0020-7683(68)90036-X.
  • Mirzade, F. K. 2013. Surface wave propagation in an elastic laser-excited half-space with small-scale effects. Physica Status Solidi (b) 250 (10):2185–93. doi:10.1002/pssb.201349208.
  • Mondal, S., S. A. Sahu, and S. Goyal. 2020. Mathematical analysis of surface wave transference through imperfect interface in FGPM bedded structure. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2020.1790388.
  • Nirwal, S., S. A. Sahu, J. Baroi, P. K. Saroj, and K. P. 2019. Analysis of wave scattering in 3-layer piezo composite structure [Pb [Zr x Ti1-x] O3-ALN-Pb [Zr x Ti1-x] O3]. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1686991.
  • Papargyri-Beskou, S., D. Polyzos, and D. E. Beskos. 2009. Wave dispersion in gradient elastic solids and structures: A unified treatment. International Journal of Solids and Structures 46 (21):3751–9. doi:10.1016/j.ijsolstr.2009.05.002.
  • Pang, Y., J. Liu, Y. Wang, and D. Fang. 2008. Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mechanica Solida Sinica 21 (6):483–90. doi:10.1007/s10338-008-0858-6.
  • Pang, Y., and J. X. Liu. 2011. Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media. European Journal of Mechanics - A/Solids 30 (5):731–40. doi:10.1016/j.euromechsol.2011.03.008.
  • Qi, L. 2019. Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Physica Scripta 94 (6):065803. doi:10.1088/1402-4896/ab02b1.
  • Rosi, G., and N. Auffray. 2016. Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63:120–34. doi:10.1016/j.wavemoti.2016.01.009.
  • Sahin, E., and S. Dost. 1988. A strain-gradients theory of elastic dielectrics with spatial dispersion. International Journal of Engineering Science 26 (12):1231–45. doi:10.1016/0020-7225(88)90043-2.
  • Savin, G. N., A. A. Lukashev, and E. M. Lysko. 1970. Elastic wave propagation in a solid with microstructure. Soviet Applied Mechanics 6 (7):725–8. doi:10.1007/BF00892125.
  • Shen, S., and S. Hu. 2010. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids 58 (5):665–77. doi:10.1016/j.jmps.2010.0.001.
  • Singh, A. K., R. Kumari, and Dharmender. 2020. Green’s function analysis of mass loading sensitivity on the shear wave propagation induced by a point source in piezoelect-romagnetic structure. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1809455.
  • Singh, B. 2010. Wave propagation in a prestressed piezoelectric half-space. Acta Mechanica 211 (3–4):337–44. doi:10.1007/s00707-009-0234-8.
  • Stengel, M. 2016. Unified ab initio formulation of flexoelectricity and strain-gradient elasticity. Physical Review B 93 (24):245107. doi:10.1103/PhysRevB.93.245107.
  • Tagantsev, A. K. 1986. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, Condensed Matter 34 (8):5883–9. doi:10.1103/PhysRevB.34.5883.
  • Tagantsev, A. K. 1987. Pyroelectric, piezoelectric, flexoelectric, and thermal polarization effects in ionic crystals. Soviet Physics Uspekhi 30 (7):588–603. doi:10.1070/PU1987v.
  • Wang, Y. Z. 2017. Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory. Applied Mathematical Modelling 48:621–34. doi:10.1016/j.apm.2017.04.018.
  • Wang, Y. Z., H. T. Cui, F. M. Li, and K. Kishimoto. 2011. Effects of viscous fluid on wave propagation in carbon nanotubes. Physics Letters A 375 (24):2448–51. doi:10.1016/j.physleta.2011.05.016.
  • Wang, Y. Z., Y. S. Wang, and L. L. Ke. 2016. Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory. Physica E: Low-Dimensional Systems and Nanostructures 83:195–200. doi:10.1016/j.physe.2016.05.020.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based straingradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Yang, W., Q. Deng, X. Liang, and S. Shen. 2018. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures 27 (8):085003. doi:10.1088/1361-665X/aacd34.
  • Yang, W. J., X. Liang, Q. Deng, and S. Shen. 2020. Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103:106105. doi:10.1016/j.ultras.2020.106105.
  • Yang, W., X. Liang, and S. Shen. 2017. Love waves in layered flexoelectric structures. Philosophical Magazine 97 (33):3186–209. doi:10.1080/14786435.2017.1378825.
  • Yoshiyuki, Y. 1968. An intrinsic theory of a Cosserat continuum. International Journal of Solids and Structures 4 (10):1013–23. doi:10.1016/0020-7683(68)90019-X.
  • Yudin, P. V., and A. K. Tagantsev. 2013. Fundamentals of flexoelectricity in solids. Nanotechnology 24 (43):432001. doi:10.1088/0957-4484/24/43/432001.
  • Zubko, P., G. Catalan, and A. K. Tagantsev. 2013. Flexoelectric effect in solids. Annual Review of Materials Research 43:387–421. doi:10.1146/annurev-matsci-071312-121634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.