296
Views
7
CrossRef citations to date
0
Altmetric
Articles

Bending, buckling and free vibration behaviors of thin-walled functionally graded sandwich and composite channel-section beams

, , &
Pages 932-960 | Received 28 Feb 2020, Accepted 01 Dec 2020, Published online: 26 Dec 2020

References

  • Aguiar, R., F. Moleiro, and C. M. Soares. 2012. Assessment of mixed and displacement-based models for static analysis of composite beams of different cross-sections. Composite Structures 94 (2):601–16. doi:10.1016/j.compstruct.2011.08.028.
  • Alizada, A., A. Sofiyev, and N. Kuruoglu. 2012. Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load. Acta Mechanica 223 (7):1371–83. doi:10.1007/s00707-012-0649-5.
  • Arnaud, L., O. Gonzalo, S. Seguy, H. Jauregi, and G. Peigné. 2011. Simulation of low rigidity part machining applied to thin-walled structures. The International Journal of Advanced Manufacturing Technology 54 (5–8):479–88. doi:10.1007/s00170-010-2976-9.
  • Ascione, L., L. Feo, and G. Mancusi. 2000. On the statical behaviour of fibre-reinforced polymer thin-walled beams. Composites Part B: Engineering 31 (8):643–54. doi:10.1016/S1359-8368(00)00032-9.
  • Aydogdu, M. 2006a. Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Composites Science and Technology 66 (10):1248–55. doi:10.1016/j.compscitech.2005.10.029.
  • Aydogdu, M. 2006b. Free vibration analysis of angle-ply laminated beams with general boundary conditions. Journal of Reinforced Plastics and Composites 25 (15):1571–83. doi:10.1177/0731684406066752.
  • Back, S. Y., and K. M. Will. 2008. Shear-flexible thin-walled element for composite I-beams. Engineering Structures 30 (5):1447–58. doi:10.1016/j.engstruct.2007.08.002.
  • Bauld, N. R., and T. Lih-Shyng. 1984. A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections. International Journal of Solids and Structures 20 (3):277–97. doi:10.1016/0020-7683(84)90039-8.
  • Cárdenas, D., H. Elizalde, J. C. Jáuregui-Correa, M. T. Piovan, and O. Probst. 2018. Unified theory for curved composite thin-walled beams and its isogeometrical analysis. Thin-Walled Structures 131:838–54. doi:10.1016/j.tws.2018.07.036.
  • Cortínez, V. H., and M. T. Piovan. 2006. Stability of composite thin-walled beams with shear deformability. Computers & Structures 84 (15–16):978–90. doi:10.1016/j.compstruc.2006.02.017.
  • Dechao, Z., D. Zhongmin, and W. Xingwei. 2001. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method. Acta Mechanica Sinica 17 (3):258–68. doi:10.1007/BF02486882.
  • Günay, M. G., and T. Timarci. 2017. Static analysis of thin-walled laminated composite closed-section beams with variable stiffness. Composite Structures 182:67–78. doi:10.1016/j.compstruct.2017.08.092.
  • Harursampath, D., A. B. Harish, and D. H. Hodges. 2017a. Model reduction in thin-walled open-section composite beams using variational asymptotic method. Part I: Theory. Thin-Walled Structures 117:356–66. doi:10.1016/j.tws.2017.03.018.
  • Harursampath, D., A. B. Harish, and D. H. Hodges. 2017b. Model reduction in thin-walled open-section composite beams using variational asymptotic method. Part II: Applications. Thin-Walled Structures 117:367–77. doi:10.1016/j.tws.2017.03.021.
  • Kim, N.-I. 2011. Shear deformable doubly-and mono-symmetric composite I-beams. International Journal of Mechanical Sciences 53 (1):31–41. doi:10.1016/j.ijmecsci.2010.10.004.
  • Kim, N.-I. 2012. Shear deformable composite beams with channel-section on elastic foundation. European Journal of Mechanics - A/Solids 36:104–21. doi:10.1016/j.euromechsol.2012.02.003.
  • Kim, N.-I., and C.-K. Jeon. 2013. Coupled static and dynamic analyses of shear deformable composite beams with channel-sections. Mechanics Based Design of Structures and Machines 41 (4):489–511. doi:10.1080/15397734.2013.797332.
  • Kim, N.-I., C.-K. Jeon, and J. Lee. 2013. A new laminated composite beam element based on eigenvalue problem. European Journal of Mechanics - A/Solids 41:111–22. doi:10.1016/j.euromechsol.2013.02.004.
  • Kim, N.-I., and J. Lee. 2014. Exact solutions for stability and free vibration of thin-walled Timoshenko laminated beams under variable forces. Archive of Applied Mechanics 84 (12):1785–809. doi:10.1007/s00419-014-0886-2.
  • Kim, N.-I., and J. Lee. 2015. Refined series methodology for the fully coupled thin-walled laminated beams considering foundation effects. Mechanics Based Design of Structures and Machines 43 (2):125–49. doi:10.1080/15397734.2014.931811.
  • Kim, N.-I., and J. Lee. 2017a. Exact solutions for coupled responses of thin-walled FG sandwich beams with non-symmetric cross-sections. Composites Part B: Engineering 122:121–35. doi:10.1016/j.compositesb.2017.04.016.
  • Kim, N.-I., and J. Lee. 2017b. Flexural-torsional analysis of functionally graded sandwich I-beams considering shear effects. Composites Part B: Engineering 108:436–50. doi:10.1016/j.compositesb.2016.09.092.
  • Kim, N.-I., and J. Lee. 2018. Nonlinear analysis of thin-walled Al/Al2O3 FG sandwich I-beams with mono-symmetric cross-section. European Journal of Mechanics - A/Solids 69:55–70. doi:10.1016/j.euromechsol.2017.11.010.
  • Kim, N.-I., and D. K. Shin. 2009. Coupled deflection analysis of thin-walled Timoshenko laminated composite beams. Computational Mechanics 43 (4):493–514. doi:10.1007/s00466-008-0324-9.
  • Kim, N.-I., D. K. Shin, and M.-Y. Kim. 2006. Exact solutions for thin-walled open-section composite beams with arbitrary lamination subjected to torsional moment. Thin-Walled Structures 44 (6):638–54. doi:10.1016/j.tws.2006.05.001.
  • Kollár, L. P., and A. Pluzsik. 2012. Bending and torsion of composite beams (torsional-warping shear deformation theory). Journal of Reinforced Plastics and Composites 31 (7):441–80. doi:10.1177/0731684412437611.
  • Lanc, D., G. Turkalj, T. P. Vo, and J. Brnić. 2016. Nonlinear buckling behaviours of thin-walled functionally graded open section beams. Composite Structures 152:829–39. doi:10.1016/j.compstruct.2016.06.023.
  • Lee, J. 2001. Center of gravity and shear center of thin-walled open-section composite beams. Composite Structures 52 (2):255–60. doi:10.1016/S0263-8223(00)00177-X.
  • Lee, J. 2005. Flexural analysis of thin-walled composite beams using shear-deformable beam theory. Composite Structures 70 (2):212–22. doi:10.1016/j.compstruct.2004.08.023.
  • Li, C., H.-S. Shen, and H. Wang. 2019a. Nonlinear bending of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Composite Structures 212:317–25. doi:10.1016/j.compstruct.2019.01.020.
  • Li, C., H.-S. Shen, and H. Wang. 2019b. Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. The European Physical Journal Plus 134 (2):1–15. doi:10.1140/epjp/i2019-12572-7.
  • Li, C., H.-S. Shen, and H. Wang. 2019c. Nonlinear vibration of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. International Journal of Structural Stability and Dynamics 19 (03):1950034. doi:10.1142/S0219455419500342.
  • Li, C., H.-S. Shen, and H. Wang. 2019d. Thermal post-buckling of sandwich beams with functionally graded negative Poisson's ratio honeycomb core. International Journal of Mechanical Sciences 152:289–97. doi:10.1016/j.ijmecsci.2019.01.002.
  • Librescu, L., and O. Song. 2005. Thin-walled composite beams: Theory and application. Netherlands: Springer Science & Business Media.
  • Maceri, F., and G. Vairo. 2009. Anisotropic thin-walled beam models: A rational deduction from three-dimensional elasticity. Journal of Mechanics of Materials and Structures 4 (2):371–94. doi:10.2140/jomms.2009.4.371.
  • Malekshahi, A., M. Hosseini, and A. N. Ansari. 2020. Theoretical estimation of axial crushing behavior of multicell hollow sections. Mechanics Based Design of Structures and Machines 1–25. doi:10.1080/15397734.2020.1776133.
  • Mantari, J., and F. Canales. 2016. Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Composite Structures 152:306–15. doi:10.1016/j.compstruct.2016.05.037.
  • Mao, R., and Q. Lin. 1996. Buckling and initial post-buckling of thin-walled composite beams. Mechanics of Composite Materials and Structures 3 (3):201–23. doi:10.1080/10759419608945864.
  • Moon, C.-J., I.-H. Kim, B.-H. Choi, J.-H. Kweon, and J.-H. Choi. 2010. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Composite Structures 92 (9):2241–51. doi:10.1016/j.compstruct.2009.08.005.
  • Nguyen, N.-D., T.-K. Nguyen, T. P. Vo, T.-N. Nguyen, and S. Lee. 2019. Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams. Composites Part B: Engineering 166:414–27. doi:10.1016/j.compositesb.2019.02.033.
  • Nguyen, T.-K., N.-D. Nguyen, T. P. Vo, and H.-T. Thai. 2017. Trigonometric-series solution for analysis of laminated composite beams. Composite Structures 160:142–51. doi:10.1016/j.compstruct.2016.10.033.
  • Nguyen, T.-T., N.-I. Kim, and J. Lee. 2016a. Analysis of thin-walled open-section beams with functionally graded materials. Composite Structures 138:75–83. doi:10.1016/j.compstruct.2015.11.052.
  • Nguyen, T.-T., N.-I. Kim, and J. Lee. 2016b. Free vibration of thin-walled functionally graded open-section beams. Composites Part B: Engineering 95:105–16. doi:10.1016/j.compositesb.2016.03.057.
  • Pagani, A., E. Carrera, and A. J. M. Ferreira. 2016. Higher-order theories and radial basis functions applied to free vibration analysis of thin-walled beams. Mechanics of Advanced Materials and Structures 23 (9):1080–91. doi:10.1080/15376494.2015.1121555.
  • Pavazza, R., A. Matoković, and M. Vukasović. 2020. A theory of torsion of thin-walled beams of arbitrary open sections with influence of shear. Mechanics Based Design of Structures and Machines 1–36. doi:10.1080/15397734.2020.1714449.
  • Pawar, P. M., and R. Ganguli. 2006. Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications. Composites Science and Technology 66 (13):2337–49. doi:10.1016/j.compscitech.2005.11.033.
  • Pradhan, K., and S. Chakraverty. 2013. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Composites Part B: Engineering 51:175–84. doi:10.1016/j.compositesb.2013.02.027.
  • Qiao, P., and G. Zou. 2002. Free vibration analysis of fiber-reinforced plastic composite cantilever I-beams. Mechanics of Advanced Materials and Structures 9 (4):359–73. doi:10.1080/15376490290096991.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  • Sheikh, A. H., and O. T. Thomsen. 2008. An efficient beam element for the analysis of laminated composite beams of thin-walled open and closed cross sections. Composites Science and Technology 68 (10–11):2273–81. doi:10.1016/j.compscitech.2008.04.018.
  • Shin, D. K., N.-I. Kim, and M.-Y. Kim. 2007. Exact stiffness matrix of mono-symmetric composite I-beams with arbitrary lamination. Composite Structures 79 (4):467–80. doi:10.1016/j.compstruct.2006.02.005.
  • Şimşek, M. 2009. Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences 1 (3):1–11.
  • Sofiyev, A. 2014. The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure. Composite Structures 117:124–34. doi:10.1016/j.compstruct.2014.06.025.
  • Sofiyev, A. 2019. Review of research on the vibration and buckling of the FGM conical shells. Composite Structures 211:301–17. doi:10.1016/j.compstruct.2018.12.047.
  • Sofiyev, A., D. Hui, S. Huseynov, M. Salamci, and G. Yuan. 2016a. Stability and vibration of sandwich cylindrical shells containing a functionally graded material core with transverse shear stresses and rotary inertia effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230 (14):2376–89. doi:10.1177/0954406215593570.
  • Sofiyev, A., and E. Osmancelebioglu. 2017. The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory. Composites Part B: Engineering 120:197–211. doi:10.1016/j.compositesb.2017.03.054.
  • Sofiyev, A. H., D. Hui, A. Valiyev, F. Kadioglu, S. Turkaslan, G. Yuan, V. Kalpakci, and A. Özdemir. 2016b. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Vlasov, V. 1961. Thin-walled elastic beams. Jerusalem: Israel program for scientific translations.
  • Vo, T. P., and J. Lee. 2009. Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory. International Journal of Mechanical Sciences 51 (9–10):631–41. doi:10.1016/j.ijmecsci.2009.05.001.
  • Vo, T. P., and J. Lee. 2013. Vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under axial loads and end moments. Mechanics of Advanced Materials and Structures 20 (8):652–65. doi:10.1080/15376494.2011.643284.
  • Xu, F., X. Zhang, and H. Zhang. 2018. A review on functionally graded structures and materials for energy absorption. Engineering Structures 171:309–25. doi:10.1016/j.engstruct.2018.05.094.
  • Zhu, Z., L. Zhang, D. Zheng, and G. Cao. 2016. Free vibration of horizontally curved thin-walled beams with rectangular hollow sections considering two compatible displacement fields. Mechanics Based Design of Structures and Machines 44 (4):354–71. doi:10.1080/15397734.2015.1075410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.