332
Views
16
CrossRef citations to date
0
Altmetric
Articles

Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells

, &
Pages 1856-1880 | Received 26 Oct 2020, Accepted 21 Jan 2021, Published online: 15 Feb 2021

References

  • Ajayan, P. M., O. Stephan, C. Colliex, and D. Trauth. 1994. Aligned carbon nanotube arrays formed by cutting a polymer resin—Nanotube composite. Science 265 (5176):1212–4. doi:10.1126/science.265.5176.1212.
  • Akasaka, T. 1989. Flexible composites. In Textile structural composites, ed. T.-W. Chou and F. Ko, 279–330. Amsterdam: Elsevier Science Publishers.
  • Anastasiadis, J. S., and G. J. Simitses. 1993. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells. Composite Structures 23 (3):221–31. doi:10.1016/0263-8223(93)90224-E.
  • Ansari, R., J. Torabi, M. F. Shojaei, and E. Hasrati. 2016. Buckling analysis of axially-loaded functionally graded carbon nanotube-reinforced composite conical panels using a novel numerical variational method. Composite Structures 157:398–411. doi:10.1016/j.compstruct.2016.08.028.
  • Ansari, R., J. Torabi, and R. Hassani. 2019. Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates. Computers & Mathematics with Applications 77:1294–311.
  • Ansari, R., R. Hassani, R. Gholami, and H. Rouhi. 2020. Thermal postbuckling analysis of FG-CNTRC plates with various shapes and temperature-dependent properties using the VDQ-FEM technique. Aerospace Science and Technology 106:106078. doi:10.1016/j.ast.2020.106078.
  • Arciniega, R. A., P. B. Goncalves, and J. N. Reddy. 2004. Buckling and postbuckling analysis of laminated cylindrical shells using third-order shear deformable theory. International Journal of Structural Stability and Dynamics 04 (03):293–312. doi:10.1142/S0219455404001240.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2018. Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load. Journal of Thermal Stresses 41 (7):847–65. doi:10.1080/01495739.2017.1421054.
  • Babaei, H., Y. Kiani, and M. R. Eslami. 2019. Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface. Composite Structures 220:888–98. doi:10.1016/j.compstruct.2019.03.064.
  • Bayat, M. R., M. M. Mashhadi, and O. Rahmani. 2018. Low-velocity impact response of sandwich cylindrical panels with nanotube-reinforced and metal face sheet in thermal environment. The Aeronautical Journal 122 (1258):1943–66. doi:10.1017/aer.2018.104.
  • Chang, T. 2010. A molecular based anisotropic shell model for single-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids 58 (9):1422–33. doi:10.1016/j.jmps.2010.05.004.
  • Chen, L., C. Liu, J. Wang, W. Zhang, C. Hu, and S. Fan. 2009. Auxetic materials with large negative Poisson’s ratios based on highly oriented carbon nanotube structures. Applied Physics Letters 94 (25):253111. doi:10.1063/1.3159467.
  • Cheshmeh, E., M. Karbon, A. Eyvazian, D. W. Jung, M. Habibi, and M. Safarpour. 2020. Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1744005.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2020. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1766494.
  • Clarke, J. F., R. A. Duckett, P. J. Hine, I. J. Hutchinson, and I. M. Ward. 1994. Negative Poisson’s ratios in angle-ply laminates: Theory and experiment. Composites 25 (9):863–8. doi:10.1016/0010-4361(94)90027-2.
  • Cong, P. H., N. D. Khanh, N. D. Khoa, and N. D. Duc. 2018. New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Composite Structures 185:455–65. doi:10.1016/j.compstruct.2017.11.047.
  • Duc, N. D., P. H. Cong, N. D. Tuan, P. Tran, and N. V. Thanh. 2017. Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin-Walled Structures 115:300–10. doi:10.1016/j.tws.2017.02.016.
  • Duc, N. D., S.-E. Kim, N. D. Tuan, P. Tran, and N. D. Khoa. 2017. New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerospace Science and Technology 70:396–404. doi:10.1016/j.ast.2017.08.023.
  • Dung, D. V., and L. K. Hoa. 2013. Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Walled Structures 63:117–24. doi:10.1016/j.tws.2012.09.010.
  • Esawi, A. M. K., and M. M. Farag. 2007. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design 28 (9):2394–401. doi:10.1016/j.matdes.2006.09.022.
  • Evans, K. E., J. P. Donoghue, and K. L. Alderson. 2004. The design, matching and manufacture of auxetic carbon fibre laminates. Journal of Composite Materials 38 (2):95–105. doi:10.1177/0021998304038645.
  • Fan, Y., and Y. Wang. 2020. The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam. International Journal of Mechanics and Materials in Design. doi:10.1007/s10999-020-09521-x.
  • Fan, Y., Y. Xiang, and H.-S. Shen. 2019. Temperature-dependent negative Poisson’s ratio of monolayer graphene: Prediction from molecular dynamics simulations. Nanotechnology Reviews 8 (1):415–21. doi:10.1515/ntrev-2019-0037.
  • Fan, Y., Y. Xiang, and H.-S. Shen. 2020. Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative Poisson’s ratios. Research 2020:1–12. doi:10.34133/2020/5618021.
  • Han, Y., and J. Elliott. 2007. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science 39 (2):315–23. doi:10.1016/j.commatsci.2006.06.011.
  • Hieu, P. T., and H. V. Tung. 2020. Thermomechanical postbuckling of pressure-loaded CNT reinforced composite cylindrical shells under tangential edge constraints and various temperature conditions. Polymer Composites 41 (1):244–57. doi:10.1002/pc.25365.
  • Hine, P. J., R. A. Duckett, and I. M. Ward. 1997. Negative Poisson’s ratios in angle-ply laminates. Journal of Materials Science Letters 16 (7):541–4. doi:10.1023/A:1018505503088.
  • Houshmand-Sarvestani, A., M. A. Shahmohammadi, and H. Salehipour. 2020. Investigation of geometric nonlinear stability of sandwich functionally graded (SFGM) spherical shells under uniform external pressure using an analytical approach. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1763181.
  • Hu, K., D. D. Kulkarni, I. Choi, and V. V. Tsukruk. 2014. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science 39 (11):1934–72. doi:10.1016/j.progpolymsci.2014.03.001.
  • Huang, C., and L. Chen. 2016. Negative Poisson’s ratio in modern functional materials. Advanced Materials 28 (37):8079–96. doi:10.1002/adma.201601363.
  • Huang, X.-H., J. Yang, L. Bai, X. Wang, and X. Ren. 2020a. Theoretical solutions for auxetic laminated beam subjected to a sudden load. Structures 28:57–68. doi:10.1016/j.istruc.2020.08.030.
  • Huang, X.-H., J. Yang, X. Wang, and I. Azim. 2020b. Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load. Engineering with Computers. doi:10.1007/s00366-020-01106-8.
  • Jain, N. K., S. Shashank, and P. Raju. 2019. Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1689140.
  • Jam, J. E., and Y. Kiani. 2015. Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Composite Structures 125:586–95. doi:10.1016/j.compstruct.2015.02.052.
  • Kasagi, A., and S. Sridharan. 1993. Buckling and postbuckling analysis of thick composite cylindrical shells under hydrostatic pressure. Composites Engineering 3 (5):467–87. doi:10.1016/0961-9526(93)90082-U.
  • Khoa, N. D., H. T. Thiem, and N. D. Duc. 2019. Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory. Mechanics of Advanced Materials and Structures 26 (3):248–59. doi:10.1080/15376494.2017.1341583.
  • Kiani, Y. 2017a. Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mechanica 228 (4):1303–19. doi:10.1007/s00707-016-1781-4.
  • Kiani, Y. 2017b. Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates. Journal of Thermal Stresses 40 (11):1442–60. doi:10.1080/01495739.2017.1336742.
  • Kiani, Y. 2018. Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. Journal of Thermal Stresses 41 (7):866–82. doi:10.1080/01495739.2018.1425645.
  • Kiani, Y., and M. Mirzaei. 2018. Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerospace Science and Technology 77:388–98. doi:10.1016/j.ast.2018.03.022.
  • Kwon, H., C. R. Bradbury, and M. Leparoux. 2011. Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Advanced Engineering Materials 13 (4):325–9. doi:10.1002/adem.201000251.
  • Lakes, R. S. 2017. Negative-Poisson’s-ratio materials: Auxetic solids. Annual Review of Materials Research 47 (1):63–81. doi:10.1146/annurev-matsci-070616-124118.
  • Li, C., H.-S. Shen, and H. Wang. 2019a. Nonlinear vibration of sandwich beams with functionally graded negative Poisson's ratio honeycomb core. International Journal of Structural Stability and Dynamics 19 (03):1950034. doi:10.1142/S0219455419500342.
  • Li, C., H.-S. Shen, and H. Wang. 2019b. Nonlinear bending of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Composite Structures 212:317–25. doi:10.1016/j.compstruct.2019.01.020.
  • Li, C., H.-S. Shen, and H. Wang. 2019c. Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. European Physical Journal Plus 134:79.
  • Li, C., H.-S. Shen, and H. Wang. 2019d. Thermal post-buckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. International Journal of Mechanical Sciences 152:289–97. doi:10.1016/j.ijmecsci.2019.01.002.
  • Li, C., H.-S. Shen, H. Wang, and Z. Yu. 2020. Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. International Journal of Mechanical Sciences 174:105472. doi:10.1016/j.ijmecsci.2020.105472.
  • Li, C., H.-S. Shen, and H. Wang. 2020a. Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core. Composite Structures 237:111894. doi:10.1016/j.compstruct.2020.111894.
  • Li, C., H.-S. Shen, and H. Wang. 2020b. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core. Nonlinear Dynamics 100 (4):3235–52. doi:10.1007/s11071-020-05686-4.
  • Li, C., H.-S. Shen, and H. Wang. 2020c. Full-scale finite element modeling and nonlinear bending analysis of sandwich plates with functionally graded auxetic 3D lattice core. Journal of Sandwich Structures & Materials. doi:10.1177/1099636220924657.
  • Li, Z.-M., and Z.-Q. Lin. 2010. Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads. Composite Structures 92 (2):553–67. doi:10.1016/j.compstruct.2009.08.048.
  • Maschmann, M. R., G. J. Ehlert, S. Tawfick, A. J. Hart, and J. W. Baur. 2014. Continuum analysis of carbon nanotube array buckling enabled by anisotropic elastic measurements and modeling. Carbon 66:377–86. [Database] doi:10.1016/j.carbon.2013.09.013.
  • Milton, G. W. 1992. Composite materials with Poisson’s ratios close to – 1. Journal of the Mechanics and Physics of Solids 40 (5):1105–37. doi:10.1016/0022-5096(92)90063-8.
  • Mirzaei, M., and Y. Kiani. 2015. Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerospace Science and Technology 47:42–53. doi:10.1016/j.ast.2015.09.011.
  • Reddy, J. N., and C. F. Liu. 1985. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science 23 (3):319–30. doi:10.1016/0020-7225(85)90051-5.
  • Sahmani, S., and M. M. Aghdam. 2018. Boundary layer modeling of nonlinear axial buckling behavior of functionally graded cylindrical nanoshells based on the surface elasticity theory. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 42 (3):229–45. doi:10.1007/s40997-017-0092-2.
  • Sahmani, S., M. Bahrami, and M. M. Aghdam. 2016. Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. International Journal of Engineering Science 99:92–106. doi:10.1016/j.ijengsci.2015.10.010.
  • Schapery, R. A. 1968. Thermal expansion coefficients of composite materials based on energy principles. Journal of Composite Materials 2 (3):380–404. doi:10.1177/002199836800200308.
  • Semenyuk, N. P., and V. M. Trach. 2007. Stability and initial postbuckling behavior of anisotropic cylindrical shells under external pressure. International Applied Mechanics 43 (3):314–28. doi:10.1007/s10778-007-0027-5.
  • Shariyat, M., and M. M. Alipour. 2017. Analytical bending and stress analysis of variable thickness FGM auxetic conical/cylindrical shells with general tractions. Latin American Journal of Solids and Structures 14 (5):805–43. doi:10.1590/1679-78253413.
  • Shen, H.-S. 2003. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Engineering Structures 25 (4):487–97. doi:10.1016/S0141-0296(02)00191-8.
  • Shen, H.-S. 2008. Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell, Part II: Prediction under external pressure. Composite Structures 82 (3):362–70. doi:10.1016/j.compstruct.2007.01.018.
  • Shen, H.-S. 2009a. Functionally graded materials nonlinear analysis of plates and shells. Boca Raton: CRC Press.
  • Shen, H.-S. 2009b. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures 91 (1):9–19. doi:10.1016/j.compstruct.2009.04.026.
  • Shen, H.-S. 2011. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells. Composite Structures 93 (10):2496–503. doi:10.1016/j.compstruct.2011.04.005.
  • Shen, H.-S. 2013. A two-step perturbation method in nonlinear analysis of beams, plates and shells. Singapore: John Wiley & Sons Inc.
  • Shen, H.-S. 2017. Postbuckling behavior of plates and shells. Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Shen, H.-S., C. Li, and J. N. Reddy. 2020a. Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Computer Methods in Applied Mechanics and Engineering 360:112727. doi:10.1016/j.cma.2019.112727.
  • Shen, H.-S., and N. Noda. 2007. Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Composite Structures 77 (4):546–60. doi:10.1016/j.compstruct.2005.08.006.
  • Shen, H.-S., X.-H. Huang, and J. Yang. 2020b. Nonlinear bending of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Mechanics of Advanced Materials and Structures 27 (13):1141–53. doi:10.1080/15376494.2020.1716412.
  • Shen, H.-S., and Y. Xiang. 2020. Effect of negative Poisson's ratio on the axially compressed postbuckling behavior of FG-GRMMC laminated cylindrical panels on elastic foundations. Thin-Walled Structures 157:107090. doi:10.1016/j.tws.2020.107090.
  • Shen, H.-S., Y. Xiang, and Y. Fan. 2019. Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments. Nanotechnology Reviews 8 (1):467–83. doi:10.1515/ntrev-2019-0042.
  • Shen, H.-S., Y. Xiang, and J. N. Reddy. 2020c. Effect of negative Poisson’s ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments. Composite Structures 253:112731. doi:10.1016/j.compstruct.2020.112731.
  • Simitses, G. J., and J. S. Anastasiadis. 1992. Shear deformable theories for cylindrical laminates- equilibrium and buckling with applications. AIAA Journal 30 (3):826–34. doi:10.2514/3.10991.
  • Smerdov, A. A. 2000. Computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling, II. Shells under external pressure. Composites Science and Technology 60 (11):2067–76. doi:10.1016/S0266-3538(00)00103-2.
  • Sofiyev, A. H., B. E. Turkaslan, R. P. Bayramov, and M. U. Salamci. 2019. Analytical solution of stability of FG-CNTRC conical shells under external pressures. Thin-Walled Structures 144:106338. doi:10.1016/j.tws.2019.106338.
  • Sofiyev, A. H., and D. Hui. 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures 134:419–27. doi:10.1016/j.tws.2018.10.018.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Sun, C. T., and S. J. Li. 1988. Three-dimensional effective elastic constants for thick laminates. Journal of Composite Materials 22:629–39.
  • Torabi, J., R. Ansari, and R. Hassani. 2019. Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory. European Journal of Mechanics - A/Solids 73:144–60. doi:10.1016/j.euromechsol.2018.07.009.
  • Trang, L. T. N., and H. V. Tung. 2021. Thermally induced postbuckling of higher order shear deformable CNT-reinforced composite flat and cylindrical panels resting on elastic foundations with elastically restrained edges. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1785312.
  • Yang, J., X.-H. Huang, and H.-S. Shen. 2020a. Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Thin-Walled Structures 148:106514. doi:10.1016/j.tws.2019.106514.
  • Yang, J., X.-H. Huang, and H.-S. Shen. 2020b. Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio resting on the Pasternak foundation. Engineering Structures 207:110250.
  • Yang, J., X.-H. Huang, and H.-S. Shen. 2020c. Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio. International Journal of Structural Stability and Dynamics 20:2050043.
  • Yu, Y., and H.-S. Shen. 2020a. A comparison of nonlinear vibration and bending of hybrid CNTRC/metal laminated plates with positive and negative Poisson's ratios. International Journal of Mechanical Sciences 183:105790.
  • Yu, Y., and H.-S. Shen. 2020b. A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative Poisson's ratios. International Journal of Structural Stability and Dynamics 20:2043007.
  • Wu, C.-P., and L.-Y. Chiu, 2020. Three-dimensional free vibration analysis of rotating sandwich functionally graded truncated conical shells under various boundary conditions. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1864400.
  • Zghal, S., S. Trabelsi, and F. Dammak. 2020. Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1790387.
  • Zhang, C.-L., and H.-S. Shen. 2006. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Applied Physics Letters 89:081904.
  • Zhang, X., and Q. Han. 2007. Buckling and postbuckling behaviors of imperfect cylindrical shells subjected to torsion. Thin-Walled Structures 45:1035–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.