241
Views
4
CrossRef citations to date
0
Altmetric
Articles

Free vibration analysis of rotating functionally graded conical shells reinforced by anisogrid lattice structure

ORCID Icon &
Pages 1881-1903 | Received 05 Aug 2020, Accepted 21 Jan 2021, Published online: 17 Feb 2021

References

  • Amirabadi, H., F. Farhatnia, S. A. Eftekhari, and R. Hosseini-Ara. 2020. Free vibration analysis of rotating functionally graded GPL-reinforced truncated thick conical shells under different boundary conditions. Mechanics Based Design of Structures and Machines 1–32. doi:10.1080/15397734.2020.1822183.
  • Chen, Y., H. Zhao, Z. Shen, I. Grieger, and B.-H. Kröplin. 1993. Vibrations of high speed rotating shells with calculations for cylindrical shells. Journal of Sound and Vibration 160 (1):137–60. doi:10.1006/jsvi.1993.1010.
  • Civalek, Ö. 2006. An efficient method for free vibration analysis of rotating truncated conical shells. International Journal of Pressure Vessels and Piping 83 (1):1–12. doi:10.1016/j.ijpvp.2005.10.005.
  • Crenwelge, O. E., Jr, and D. Muster. 1969. Free vibrations of ring‐and‐stringer‐stiffened conical shells. The Journal of the Acoustical Society of America 46 (1B):176–85. doi:10.1121/1.1911667.
  • Dung, D. V., L. T. N. Anh, and L. K. Hoa. 2018. Analytical investigation on the free vibration behavior of rotating FGM truncated conical shells reinforced by orthogonal eccentric stiffeners. Mechanics of Advanced Materials and Structures 25 (1):32–46. doi:10.1080/15376494.2016.1255807.
  • Gerdeen, J. C., and R. A. Rorrer. 2012. Engineering design with polymers and composites. 2nd ed. Vol. 30. CRC Press.doi:10.1201/b11597.
  • Golchi, M., M. Talebitooti, and R. Talebitooti. 2019. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method. Mechanics Based Design of Structures and Machines 47 (3):255–82. doi:10.1080/15397734.2018.1545588.
  • Hosseini-Hashemi, S., M. Ilkhani, and M. Fadaee. 2013. Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. International Journal of Mechanical Sciences 76:9–20. doi:10.1016/j.ijmecsci.2013.08.005.
  • Hua, L. 2000. Frequency characteristics of a rotating truncated circular layered conical shell. Composite Structures 50 (1):59–68. doi:10.1016/S0263-8223(00)00080-5.
  • Irie, T., G. Yamada, and K. Tanaka. 1984. Natural frequencies of truncated conical shells. Journal of Sound and Vibration 92 (3):447–53. doi:10.1016/0022-460X(84)90391-2.
  • Jafari, A., and M. Bagheri. 2006. Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution. Journal of Sound and Vibration 296 (1/2):353–67. doi:10.1016/j.jsv.2006.03.001.
  • Jin, G., T. Ye, and Z. Su. 2015. Structural Vibration: A uniform accurate solution for laminated beams, plates and shells with general boundary conditions. Berlin Heidelberg: Springer-Verlag.
  • Khadem, S. E., and R. Nezamoleslami. 2017. Investigation of the free vibrations of composite anisogrid lattice conical shells formed by geodesically spiral and circumferential ribs. International Journal of Applied Mechanics 9 (4):1750047. doi:10.1142/S1758825117500478.
  • Lam, K., and L. Hua. 1997. Vibration analysis of a rotating truncated circular conical shell. International Journal of Solids and Structures 34 (17):2183–97. doi:10.1016/S0020-7683(96)00100-X.
  • Lam, K., and L. Hua. 1999. Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell. Journal of Sound and Vibration 223 (2):171–95. doi:10.1006/jsvi.1998.1432.
  • Leissa, A. 1973. Vibration of shells (NASA SP-288). Washington, DC: US Government Printing Office.
  • Li, H., K.-Y. Lam, and T.-Y. Ng. 2005. Rotating shell dynamics. 1st ed. Amsterdam; Boston: Elsevier.
  • Malekzadeh, P., A. Fiouz, and M. Sobhrouyan. 2012. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment. International Journal of Pressure Vessels and Piping 89:210–21. doi:10.1016/j.ijpvp.2011.11.005.
  • Malekzadeh, P., and Y. Heydarpour. 2013. Free vibration analysis of rotating functionally graded truncated conical shells. Composite Structures 97:176–88. doi:10.1016/j.compstruct.2012.09.047.
  • Mecitoğlu, Z. 1996. Vibration characteristics of a stiffened conical shell. Journal of Sound and Vibration 197 (2):191–206. doi:10.1006/jsvi.1996.0525.
  • Mirjavadi, S. S., M. Forsat, M. R. Barati, and A. S. Hamouda. 2020. Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments. Mechanics Based Design of Structures and Machines 1–15. doi:10.1080/15397734.2020.1771729.
  • Ng, T., H. Li, and K. Lam. 2003. Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions. International Journal of Mechanical Sciences 45 (3):567–87. doi:10.1016/S0020-7403(03)00042-0.
  • Rao, S. S., and E. Reddy. 1981. Optimum design of stiffened conical shells with natural frequency constraints. Computers & Structures 14 (1/2):103–10. doi:10.1016/0045-7949(81)90089-4.
  • Raouf, N., A. Davar, and S. H. Pourtakdoust. 2020. Reliability analysis of composite anisogrid lattice interstage structure. Mechanics Based Design of Structures and Machines 1–9. doi:10.1080/15397734.2020.1822180.
  • Sarkheil, S., and M. S. Foumani. 2017. An improvement to motion equations of rotating truncated conical shells. European Journal of Mechanics – A/Solids 62:110–20. doi:10.1016/j.euromechsol.2016.11.003.
  • Shakouri, M. 2019. Free vibration analysis of functionally graded rotating conical shells in thermal environment. Composites Part B: Engineering 163:574–84. doi:10.1016/j.compositesb.2019.01.007.
  • Shu, C. 1996. Free vibration analysis of composite laminated conical shells by generalized differential quadrature. Journal of Sound and Vibration 194 (4):587–604. doi:10.1006/jsvi.1996.0379.
  • Sofiyev, A., and N. Kuruoglu. 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B: Engineering 70:122–30. doi:10.1016/j.compositesb.2014.10.047.
  • Talebitooti, M. 2018. Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends. Mechanics of Advanced Materials and Structures 25 (2):155–65. doi:10.1080/15376494.2016.1255809.
  • Talebitooti, M., K. Daneshjou, and R. Talebitooti. 2013. Vibration and critical speed of orthogonally stiffened rotating FG cylindrical shell under thermo-mechanical loads using differential quadrature method. Journal of Thermal Stresses 36 (2):160–88. doi:10.1080/01495739.2013.764807.
  • Talebitooti, M., M. Ghayour, S. Ziaei-Rad, and R. Talebitooti. 2010. Free vibrations of rotating composite conical shells with stringer and ring stiffeners. Archive of Applied Mechanics 80 (3):201–15. doi:10.1007/s00419-009-0311-4.
  • Talezadehlari, A., and G. Rahimi. 2016. Comment on "Optimization for buckling loads of grid stiffened composite panels. Composite Structures 135:409–10. doi:10.1016/j.compstruct.2015.09.006.
  • Tong, L. 1993. Free vibration of composite laminated conical shells. International Journal of Mechanical Sciences 35 (1):47–61. doi:10.1016/0020-7403(93)90064-2.
  • Totaro, G., and Z. Gürdal. 2009. Optimal design of composite lattice shell structures for aerospace applications. Aerospace Science and Technology 13 (4/5):157–64. doi:10.1016/j.ast.2008.09.001.
  • Vasiliev, V. V., V. A. Barynin, and A. F. Razin. 2012. Anisogrid composite lattice structures–development and aerospace applications. Composite Structures 94 (3):1117–27. doi:10.1016/j.compstruct.2011.10.023.
  • Zarei, M., G. Rahimi, and M. Hemmatnezhad. 2020. Free vibrational characteristics of grid-stiffened truncated composite conical shells. Aerospace Science and Technology 99:105717. doi:10.1016/j.ast.2020.105717.
  • Zhang, N., T. Khan, H. Guo, S. Shi, W. Zhong, and W. Zhang. 2019. Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Advances in Materials Science and Engineering 2019:1–18. doi:10.1155/2019/1354150.
  • Zhang, J.-H., and S.-R. Li. 2013. Free vibration of functionally graded truncated conical shells using the GDQ method. Mechanics of Advanced Materials and Structures 20 (1):61–73. doi:10.1080/15376494.2011.581415.
  • Zhao, X., K. Liew, and T. Ng. 2002. Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners. International Journal of Solids and Structures 39 (2):529–45. doi:10.1016/S0020-7683(01)00194-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.