344
Views
4
CrossRef citations to date
0
Altmetric
Articles

Geometric/microstructural imperfection sensitivity in the vibration characteristics of geometrically non-uniform functionally graded plates with mixed boundary conditions

ORCID Icon, , , , &
Pages 2020-2054 | Received 21 May 2020, Accepted 04 Feb 2021, Published online: 03 Mar 2021

References

  • Addou, F. Y., M. Meradjah, A. A. Bousahla, A. Benachour, F. Bourada, A. Tounsi, and S. R. Mahmoud. 2019. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT. Computers and Concrete 24:347–67.
  • Allahverdizadeh, A., M. H. Naei, and M. Nikkhah Bahrami. 2008. Nonlinear free and forced vibration analysis of thin circular functionally graded plates. Journal of Sound Vibrations. 310 (4-5):966–84. doi:10.1016/j.jsv.2007.08.011.
  • Ansari, M. I., A. Kumar, and R. Bandyopadhyaya. 2019a. Bending analysis of doubly curved FGM sandwich rhombic conoids. Structural Engineering and Mechanics 71:469–83.
  • Ansari, M. I., A. Kumar, D. Barnat-Hunek, Z. Suchorab, W. Andrzejuk, and D. Majerek. 2018. Static and dynamic response of FG-CNT-reinforced rhombic laminates. Applied Sciences 8: 834.
  • Ansari, M. I., A. Kumar, D. Barnat-Hunek, Z. Suchorab, and B. Kwiatkowski. 2019b. Investigation of porosity effect on flexural analysis of doubly curved FGM conoids. Science and Engineering of Composite Materials 26 (1):435–48. doi:10.1515/secm-2019-0026.
  • Ansari, M. I., A. Kumar, and A. Chakrabarti. 2017. Static analysis of doubly curved singly ruled truncated FGM cone. Composite Structures. 184:525–35.
  • Bansal, G., A. Gupta, and V. Katiyar. 2020. Vibration of porous functionally graded plates with geometric discontinuities and partial supports. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (21):4149–70.
  • Batou, B.,. M. Nebab, R. Bennai, H. A. Atmane, A. Tounsi, and M. Bouremana. 2019. Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel & Composite and Structure 33:699–716.
  • Bekkaye, T. H. L., B. Fahsi, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, A. Tounsi, and M. M. Al-Zahrani. 2020. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Computers and Concrete 6:439–50.
  • Belabed, Z., M. S. Ahmed Houari, A. Tounsi, S. R. Mahmoud, and O. Anwar Bég. 2014. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Composites Part B: Engineering 60:274–83. doi:10.1016/j.compositesb.2013.12.057.
  • Bendenia, N., M. Zidour, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, E. A. A. Bedia, S. R. Mahmoud, and A. Tounsi. 2020. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Computers and Concrete 26:213–26.
  • Bourada, F., A. A. Bousahla, M. Bourada, A. Azzaz, A. Zinata, and A. Tounsi. 2019. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory. Wind and Structures, An International Journal 28:19–30.
  • Boussoula, A., B. Boucham, M. Bourada, F. Bourada, A. Tounsi, A. A. Bousahla, and A. Tounsi. 2020. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates. Smart Structures and Systems 25:197–218.
  • Chikr, S. C., A. Kaci, A. A. Bousahla, F. Bourada, A. A. Tounsi, E. A. Bedia, S. R. Mahmoud, K. H. Benrahou, and A. A. Tounsi. 2020. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach. The Geomechanics and Engineering 21:471–87.
  • Cho, M., and J. Oh. 2003. Higher order zig-zag plate theory under thermo-electric-mechanical loads combined. Composites Part B: Engineering 34 (1):67–82. doi:10.1016/S1359-8368(02)00071-9.
  • Cuong-Le, T., K. D. Nguyen, N. Nguyen-Trong, S. Khatir, H. Nguyen-Xuan, and M. Abdel-Wahab. 2020. A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Composite Structures 259:113216.
  • Ferreira, A. J. M., R. C. Batra, C. M. C. Roque, L. F. Qian, and R. M. N. Jorge. 2006. Natural frequencies of functionally graded plates by a meshless method. Composite Structures. 75 (1–4):593–600. doi:10.1016/j.compstruct.2006.04.018.
  • Gupta, A., and M. Talha. 2018a. Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates. Mechanics Based Design of Structures and Machines. 46 (6):693–711. doi:10.1080/15397734.2018.1449656.
  • Gupta, A., and M. Talha. 2018b. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. International Journal of Structural Stability and Dynamics. 18:1–31.
  • Gupta, A., M. Talha, and V. K. Chaudhari. 2016a. Natural frequency of functionally graded plates resting on elastic foundation using finite element method. Procedia Technology. 23:163–70. doi:10.1016/j.protcy.2016.03.013.
  • Gupta, A., M. Talha, and B. N. Singh. 2016b. Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Composites Part B: Engineering 94:64–74. doi:10.1016/j.compositesb.2016.03.006.
  • Hu, Y. D., and X. G. Zhang. 2011. Parametric vibrations and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines. 39:367–77.
  • Hui, D. 1984. Effects of geometric imperfections on frequency-load interaction of biaxially compressed antisymmetric angle ply rectangular plates. American Society of Mechanical Engineers 50:155–62.
  • Jha, D. K., T. Kant, and R. K. Singh. 2013. Free vibration response of functionally graded thick plates with shear and normal deformations effects. Composite Structures. 96:799–823. doi:10.1016/j.compstruct.2012.09.034.
  • Kaddari, M., A. Kaci, A. A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, E. A. A. Bedia, and M. A. Al-Osta. 2020. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Computers and Concrete 25:37–57.
  • Kitipornchai, S., J. Yang, and K. M. Liew. 2004. Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections. International Journal of Solids and Structures. 41 (9-10):2235–57. doi:10.1016/j.ijsolstr.2003.12.019.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1-2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Lui, T., and S. S. Lam. 2001. Finite strip analysis of laminated plates with general initial imperfection under end shortening. Engineering Structures 23 (6):673–86. doi:10.1016/S0141-0296(00)00076-6.
  • Mantari, J. L., and C. Guedes Soares. 2014. A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates. Composite Structures 107:396–405. doi:10.1016/j.compstruct.2013.07.046.
  • Mechab, B., I. Mechab, S. Benaissa, M. Ameri, and B. Serier. 2016. Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations. Applied Mathematical Modelling 40 (2):738–49. doi:10.1016/j.apm.2015.09.093.
  • Medani, M.,. A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A. A. Bousahla, A. Tounsi, and S. R. Mahmoud. 2019. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel & Composite Structures 32:595–610.
  • Menasria, A., A. Kaci, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, A. Tounsi, B. E. Adda, and S. R. Mahmoud. 2020. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel & Composite Structures 36:355–67.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, and C. M. M. Soares. 2013. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering 44 (1):657–74. doi:10.1016/j.compositesb.2012.01.089.
  • Nguyen, T. K., T. Truong-Phong Nguyen, T. P. Vo, and H. T. Thai. 2015. Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Composites Part B: Engineering 76:273–85. doi:10.1016/j.compositesb.2015.02.032.
  • Nie, G. J., and Z. Zhong. 2007. Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Computer Methods in Applied Mechanics and Engineering 196 (49–52):4901–10. doi:10.1016/j.cma.2007.06.028.
  • Rabhi, M., K. H. Benrahou, A. Kaci, M. S. A. Houari, F. Bourada, A. A. Bousahla, A. Tounsi, E. A. A. Bedia, S. R. Mahmoud, and A. Tounsi. 2020. A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Geomechanics and Engineering 22:119–32.
  • Rahmani, M. C., A. Kaci, A. A. Bousahla, F. Bourada, A. Tounsi, E. A. A. Bedia, S. R. Mahmoud, K. H. Benrahou, and A. Tounsi. 2020. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory. Computers and Concrete 25:225–44.
  • Rao, L. B., and C. K. Rao. 2009. Buckling of circular plates with an internal elastic ring support and elastically restrained guided edge against translation. Mechanics Based Design of Structures and Machines 37 (1):60–72. doi:10.1080/15397730802706672.
  • Reddy, J. N. 2000. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering 47 (1–3):663–84. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • Refrafi, S., A. A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, A. Tounsi, E. A. A. Bedia, S. R. Mahmoud, K. H. Benrahou, and A. Tounsi. 2020. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Computers and Concrete 25:311–25.
  • Sarangan, S., and B. N. Singh. 2016. Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories. Composite Structures. 138:391–403. doi:10.1016/j.compstruct.2015.11.049.
  • Shahrjerdi, A., M. Bayat, F. Mustapha, S. M. Sapuan, and R. Zahari. 2010. Second-Order Shear Deformation Theory to Analyze Stress Distribution for Solar Functionally Graded Plates. Mechanics Based Design of Structures and Machines 38 (3):348–61. doi:10.1080/15397731003744603.
  • Sheikholeslami, S. A., and A. R. Saidi. 2013. Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory. Composite Structures 106:350–61. doi:10.1016/j.compstruct.2013.06.016.
  • Thai, H. T., and D. H. Choi. 2011. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology 71 (16):1850–8. doi:10.1016/j.compscitech.2011.08.016.
  • Tounsi, A., S. U. Al-Dulaijan, M. A. Al-Osta, A. Chikh, M. M. Al-Zahrani, A. Sharif, and A. Tounsi. 2020. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation. Steel & Composite Structures 34:511–24.
  • Tsiptsis, I. N., and E. J. Sapountzakis. 2018. Isogeometric analysis for the dynamic problem of curved structures including warping effects. Mechanics Based Design of Structures and Machines 46 (1):66–84. doi:10.1080/15397734.2016.1275974.
  • Uymaz, B., and M. Aydogdu. 2007. Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. Journal of Reinforced Plastics and Composites 26 (18):1847–63. doi:10.1177/0731684407081351.
  • Vel, S. S., and R. C. Batra. 2004. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal of Sound Vibrations 272 (3–5):703–30. doi:10.1016/S0022-460X(03)00412-7.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology 32 (1):111–20. doi:10.1016/j.ast.2013.12.002.
  • Xiang, S., Y. X. Jin, Z. Y. Bi, S. X. Jiang, and M. S. Yang. 2011. A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Composite Structures 93 (11):2826–32. doi:10.1016/j.compstruct.2011.05.022.
  • Yan, L., Y. Chen, and F. Liou. 2020. Additive manufacturing of functionally graded metallic materials using laser metal deposition. Additive Manufacturing 31:100901. doi:10.1016/j.addma.2019.100901.
  • Yang, J., and X. L. Huang. 2007. Nonlinear transient response of functionally graded plates with general imperfections in thermal environments. Computer Methods in Applied Mechanics and Engineering 196 (25–28):2619–30. doi:10.1016/j.cma.2007.01.012.
  • Zaoui, F. Z., D. Ouinas, and A. Tounsi. 2019. New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Composites Part B: Engineering 159:231–47. doi:10.1016/j.compositesb.2018.09.051.
  • Zenkour, A. M. 2020. Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses. Physical Mesomechanics 23 (1):39–53. doi:10.1134/S1029959920010051.
  • Zine, A., A. A. Bousahla, F. Bourada, K. H. Benrahou, A. Tounsi, E. A. A. Bedia, S. R. Mahmoud, and A. Tounsi. 2020. Bending analysis of functionally graded porous plates via a refined shear deformation theory. Computers and Concrete 26:63–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.