226
Views
2
CrossRef citations to date
0
Altmetric
Articles

Wave propagation and vibration in intelligent nanoplates: A mechanical modeling approach

, , , , , & show all
Pages 2101-2129 | Received 16 May 2020, Accepted 11 Feb 2021, Published online: 04 Mar 2021

References

  • Abolhasani, M. M., K. Shirvanimoghaddam, H. Khayyam, S. M. Moosavi, N. Zohdi, and M. Naebe. 2018. Towards predicting the piezoelectricity and physiochemical properties of the electrospun P(VDF-TrFE) nanogenrators using an artificial neural network. Polymer Testing 66:178–88. doi:10.1016/j.polymertesting.2018.01.010.
  • Abolhasani, M. M., M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, et al. 2019. Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators. Nano Energy. 62:594–600. doi:10.1016/j.nanoen.2019.05.044.
  • Alam, P., S. Kundu, and S. Gupta. 2018a. Dispersion and attenuation of love-type waves due to a point source in magneto-viscoelastic layer. Journal of Mechanics 34 (6):801–16. doi:10.1017/jmech.2017.110.
  • Alam, P., S. Kundu, and S. Gupta. 2018b. Effect of magneto-elasticity, hydrostatic stress and gravity on Rayleigh waves in a hydrostatic stressed magneto-elastic crystalline medium over a gravitating half-space with sliding contact. Mechanics Research Communications 89:11–7. doi:10.1016/j.mechrescom.2018.02.001.
  • Alam, P., S. Kundu, and S. Gupta. 2018c. Love-type wave propagation in a hydrostatic stressed magneto-elastic transversely isotropic strip over an inhomogeneous substrate caused by a disturbance point source. Journal of Intelligent Material Systems and Structures 29 (11):2508–21. doi:10.1177/1045389X18770877.
  • Alavi, S. H., and H. Eipakchi. 2019. Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines 47 (4):497–519. doi:10.1080/15397734.2019.1565499.
  • Amir, S. 2019. Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233 (2):197–208. doi:10.1177/1464420716670929.
  • Arda, M., and M. Aydogdu. 2020. Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass. Mechanics Based Design of Structures and Machines 1–17. doi:10.1080/15397734.2020.1728548.
  • Arefi, M., and A. M. Zenkour. 2017. Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers. Acta Mechanica 228 (2):475–93. doi:10.1007/s00707-016-1716-0.
  • Badii, K., J. S. Church, G. Golkarnarenji, M. Naebe, and H. Khayyam. 2016. Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model. Polymer Degradation and Stability 131:53–61. doi:10.1016/j.polymdegradstab.2016.06.019.
  • Bakhshi Khaniki, H., and S. Hosseini-Hashemi. 2017. Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. International Journal of Engineering Science 115:51–72. doi:10.1016/j.ijengsci.2017.02.005.
  • Carrara, M., M. Cacan, M. Leamy, M. Ruzzene, and A. Erturk. 2012. Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror. Applied Physics Letters 100 (20):204105. doi:10.1063/1.4719098.
  • Farajpour, A., K. K. Żur, J. Kim, and J. Reddy. 2021. Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Composite Structures 260:113458. doi:10.1016/j.compstruct.2020.113458.
  • Hamidzadeh, H. R., L. Dai, and R. N. Jazar. 2014. Wave propagation in solid and porous half-space media. Berlin: Springer.
  • Hood, R. L., W. F. Carswell, A. Rodgers, M. A. Kosoglu, M. N. Rylander, D. Grant, J. L. Robertson, and C. G. Rylander. 2013. Spatially controlled photothermal heating of bladder tissue through single-walled carbon nanohorns delivered with a fiberoptic microneedle device. Lasers in Medical Science 28 (4):1143–50. doi:10.1007/s10103-012-1202-4.
  • Jamalpoor, A., and A. Kiani. 2017. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects. Applied Physics A 123 (3):201. doi:10.1007/s00339-017-0784-x.
  • Jung, W.-Y., S.-C. Han, and W.-T. Park. 2014. A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Composites Part B: Engineering 60:746–56. doi:10.1016/j.compositesb.2013.12.058.
  • Karamanli, A., and M. Aydogdu. 2020. Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines 48 (2):164–91. doi:10.1080/15397734.2019.1627219.
  • Karami, B., D. Shahsavari, and L. Li. 2018. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures 97:317–27. doi:10.1016/j.physe.2017.11.020.
  • Karimi, M. 2019. Rate of surface energy changes on the wave propagation analysis of METE nanoplates based on couple stress small-scale and nonlocal strain gradient theories. Materials Research Express 6 (8):085087. doi:10.1088/2053-1591/ab22c6.
  • Karimi, M., and A. R. Shahidi. 2017a. Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings. Applied Physics A 123 (5):304. doi:10.1007/s00339-017-0828-2.
  • Karimi, M., and A. R. Shahidi. 2017b. Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 231 (3):111–30. doi:10.1177/2397791417719970.
  • Karimi, M., and A. R. Shahidi. 2018. Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method. Applied Physics A 124 (10):681. doi:10.1007/s00339-018-2088-1.
  • Karimi, M., and A. R. Shahidi. 2019a. Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates. Applied Physics A 125 (2):154. doi:10.1007/s00339-019-2429-8.
  • Karimi, M., and A. R. Shahidi. 2019b. A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto–electro–thermo-elastic nanoplate. Applied Physics A 125 (2):106. doi:10.1007/s00339-018-2168-2.
  • Karimi, M., A. R. Shahidi, and S. Ziaei-Rad. 2017. Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings. Microsystem Technologies 23 (10):4903–15. doi:10.1007/s00542-017-3395-8.
  • Karimi, M., M. R. Farajpour, S. Rafieian, A. S. Milani, and H. Khayyam. 2020. Surface energy layers investigation of intelligent magnetoelectrothermoelastic nanoplates through a vibration analysis. The European Physical Journal Plus 135 (6):488. doi:10.1140/epjp/s13360-020-00467-9.
  • Karimi, M., and S. Rafieian. 2019. A comprehensive investigation into the impact of nonlocal strain gradient and modified couple stress models on the rates of surface energy layers of BiTiO3–CoFe2O4 nanoplates: A vibration analysis. Materials Research Express 6 (7):075038. doi:10.1088/2053-1591/ab151b.
  • Kilic, U., S. M. Daghash, M. M. Sherif, and O. E. Ozbulut. 2020. Tensile characterization of graphene nanoplatelet/shape memory alloy/epoxy composites using digital and thermal imaging. Polymer Composites e25896. doi:10.1002/pc.25896.
  • Li, C., H. Guo, X. Tian, and T. He. 2019a. Generalized thermoelastic diffusion problems with fractional order strain. European Journal of Mechanics - A/Solids 78:103827. doi:10.1016/j.euromechsol.2019.103827.
  • Li, C., H. Guo, X. Tian, and T. He. 2019b. Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. Journal of Thermal Stresses 42 (8):1051–70. doi:10.1080/01495739.2019.1587331.
  • Li, C., H. Guo, X. Tian, and T. He. 2019c. Size-dependent thermo-electromechanical responses analysis of multi-layered piezoelectric nanoplates for vibration control. Composite Structures 225:111112. doi:10.1016/j.compstruct.2019.111112.
  • Lin, L., X. Wang, and X. Zeng. 2017. Computational modeling of interfacial behaviors in nanocomposite materials. International Journal of Solids and Structures 115116:43–52. doi:10.1016/j.ijsolstr.2017.02.029.
  • Ma, C., M. T. Andani, H. Qin, N. S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G. L. Doll, et al. 2017. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. Journal of Materials Processing Technology 249:433–40. doi:10.1016/j.jmatprotec.2017.06.038.
  • Merunka, I., A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba. 2019. Microwave tomography system for methodical testing of human brain stroke detection approaches. International Journal of Antennas and Propagation 2019:1–9. doi:10.1155/2019/4074862.
  • Narita, F., and M. Fox. 2018. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Advanced Engineering Materials 20 (5):1700743. doi:10.1002/adem.201700743.
  • Nimbalkar, S., E. Fuhrer, P. Silva, T. Nguyen, M. Sereno, S. Kassegne, and J. Korvink. 2019. Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. Microsystems & Nanoengineering 5 (1):61. doi:10.1038/s41378-019-0106-x.
  • Olson, B. J., S. W. Shaw, C. Shi, C. Pierre, and R. G. Parker. 2014. Circulant matrices and their application to vibration analysis. Applied Mechanics Reviews 66 (4):040803. doi:10.1115/1.4027722.
  • Paudel, N., A. Buldum, T. Ohashi, and L. Dai. 2009. Modelling and simulations of adhesion between carbon nanotubes and surfaces. Molecular Simulation 35 (6):520–4. doi:10.1080/08927020902862490.
  • Pouresmaeeli, S., E. Ghavanloo, and S. A. Fazelzadeh. 2013. Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Composite Structures 96:405–10. doi:10.1016/j.compstruct.2012.08.051.
  • Priya, S., and D. J. Inman. 2009. Energy harvesting technologies. Vol. 21. New York: Springer.
  • Rahmati, M., and S. Khodaei. 2018. Nonlocal vibration and instability analysis of carbon nanotubes conveying fluid considering the influences of nanoflow and non-uniform velocity profile. Microfluidics and Nanofluidics 22 (10):117. doi:10.1007/s10404-018-2130-9.
  • Safaei, M., H. A. Sodano, and S. R. Anton. 2019. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Materials and Structures 28 (11):113001. doi:10.1088/1361-665X/ab36e4.
  • Shahgholian-Ghahfarokhi, D., G. Rahimi, M. Zarei, and H. Salehipour. 2020. Free vibration analyses of composite sandwich cylindrical shells with grid cores: Experimental study and numerical simulation. Mechanics Based Design of Structures and Machines 1–20. doi:10.1080/15397734.2020.1725565.
  • Talebizadehsardari, P., H. Salehipour, D. Shahgholian-Ghahfarokhi, A. Shahsavar, and M. Karimi. 2020. Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution. Mechanics Based Design of Structures and Machines 1–27. doi:10.1080/15397734.2020.1744002.
  • Vasseur, J., O. B. Matar, J. Robillard, A.-C. Hladky-Hennion, and P. A. Deymier. 2011. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials. AIP Advances 1 (4):041904. doi:10.1063/1.3676172.
  • Yang, E., T. Hwang, A. Kumar, and K. J. Kim. 2018. Anti‐biofouling, thermal, and electrical performance of nanocomposite coating with multiwall carbon nanotube and polytetrafluoroethylene‐blended polyphenylenesulfide. Advances in Polymer Technology 37 (3):843–9. doi:10.1002/adv.21728.
  • Yang, S., and M. T. A. Saif. 2007. MEMS based force sensors for the study of indentation response of single living cells. Sensors and Actuators A: Physical 135 (1):16–22. doi:10.1016/j.sna.2006.05.019.
  • Zargarani, A., and S. N. Mahmoodi. 2017. Experimental investigation for enhancing the output power of a piezoelectric energy harvester. Smart Materials, Adaptive Structures and Intelligent Systems. 58257, V001T07A002. doi:10.1115/SMASIS2017-3741.
  • Zenkour, A. M., and M. Sobhy. 2018. Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mechanica 229 (1):3–19. doi:10.1007/s00707-017-1920-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.