148
Views
11
CrossRef citations to date
0
Altmetric
Articles

Memory and dynamic response of a thermoelastic functionally graded nanobeams due to a periodic heat flux

ORCID Icon & ORCID Icon
Pages 2154-2176 | Received 20 Oct 2020, Accepted 10 Feb 2021, Published online: 25 Feb 2021

References

  • Honig, G., and U. Hirdes. 1984. A method for the numerical inversion of the Laplace transform. Journal of Computational and Applied Mathematics 10 (1):113–32. doi:10.1016/0377-0427(84)90075-X.
  • Abd Elkhalek, M., T. Osman, and M. S. Matbuly. 2019. Vibrations analysis of cracked nanobeams using quadrature technique. Engineering Mathematics 3 (1):19–29. doi:10.11648/j.engmath.20190301.15.
  • Abo Dahab, S. M., A. E. Abouelregal, and M. Marin. 2020. Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam. Symmetry 12 (7):1094. doi:10.3390/sym12071094.
  • Abo Dahab, S. M., A. E. Abouelregal, and H. Ahmad. 2020. Fractional heat conduction model with phase lags for a half‐space with thermal conductivity and temperature dependent. Mathematical Methods in the Applied Sciences doi:10.1002/mma.6614.
  • Abouelregal, A. E. 2019a. Modified fractional thermoelasticity model with multi-relaxation times of higher order: Application to spherical cavity exposed to a harmonic varying heat. Waves in Random and Complex Media :1–21. doi:10.1080/17455030.2019.1628320.
  • Abouelregal, A. E. 2019b. Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Materials Research Express 6 (11):116535. doi:10.1088/2053-1591/ab447f.
  • Abouelregal, A. E. 2019c. A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscipline Modeling in Materials and Structures 16 (4):689–711. doi:10.1108/MMMS-07-2019-0138.
  • Abouelregal, A. E. 2020b. Modified fractional photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. Silicon 12 (12):2837–50. doi:10.1007/s12633-020-00380-x.
  • Abouelregal, A. E. 2020c. On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. Journal of Applied and Computational Mechanics 6 (3):445–56.
  • Abouelregal, A. E. 2020d. Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives. Indian Journal of Physics 94 (12):1949–63. doi:10.1007/s12648-019-01635-z.
  • Abouelregal, A. E. 2020f. A novel model of nonlocal thermoelasticity with time derivatives of higher order. Mathematical Methods in the Applied Sciences 43 (11):6746–60. doi:10.1002/mma.6416.
  • Abouelregal, A. E., and M. Marin. 2020a. The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8 (7):1128. doi:10.3390/math8071128.
  • Abouelregal, A. E., and M. Marin. 2020b. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12 (8):1276. doi:10.3390/sym12081276.
  • Abouelregal, A. E., and B. O. Mohamed. 2018. Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating. Journal of Computational and Theoretical Nanoscience 15 (4):1233–42. doi:10.1166/jctn.2018.7209.
  • Abouelregal, A. E., and W. W. Mohammed. 2020. Effects of nonlocal thermoelasticity on nanoscale beams based on couple stress theory. Mathematical Methods in the Applied Sciences doi:10.1002/mma.6764.
  • Abouelregal, A. E., M. V. Moustapha, T. A. Nofal, S. Rashid, and H. Ahmad. 2021. Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results in Physics 20:103705. doi:10.1016/j.rinp.2020.103705.
  • Bayones, F. S., A. A. Kilany, A. E. Abouelregal, and S. M. Abo-Dahab. 2021. A rotational gravitational stressed and voids effect on an electromagnetic photothermal semiconductor medium under three models of thermoelasticity. Mechanics Based Design of Structures and Machines doi:10.1080/15397734.2020.1863229.
  • Biswas, S. 2019. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–8. doi:10.1080/15397734.2018.1548968.
  • Borjalilou, V., M. Asghari, and E. Taati. 2020. Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. Journal of Vibration and Control 26 (11–12):1042–53. doi:10.1177/1077546319891334.
  • Caputo, M. 1967. Linear models of dissipation whose Q is almost frequency independent-II. Geophysical Journal International 13 (5):529–39. doi:10.1111/j.1365-246X.1967.tb02303.x.
  • Cattaneo, C. 1948. Sulla conduzione del calore. Atti. Sem. Mat. Fis. Modena 3:83–101.
  • Diethelm, K. 2010. The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Berlin Heidelberg: Springer-Verlag.
  • Eringen, A. C. 1972. Nonlocal polar elastic continua. International Journal of Engineering Science 10 (1):1–16. doi:10.1016/0020-7225(72)90070-5.
  • Eringen, A. C. 1983. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics 54 (9):4703–10. doi:10.1063/1.332803.
  • Eringen, A. C., and D. G. B. Edelen. 1972. On nonlocal elasticity. International Journal of Engineering Science 10 (3):233–48. doi:10.1016/0020-7225(72)90039-0.
  • Ezzat, M. A. 2011. Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Physica B: Condensed Matter 406 (1):30–5. doi:10.1016/j.physb.2010.10.005.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2017. On dual phase-lag thermoelasticity theory with memory-dependent derivative. Mechanics of Advanced Materials and Structures 24 (11):908–16. doi:10.1080/15376494.2016.1196793.
  • Fakher, M., and S. H. Hashemi. 2021. Nonlinear vibration analysis of two-phaselocal/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. Journal of Vibration and Control 20 (3-4):378–91. doi:10.1177/1077546320927619.
  • Faroughi, S., M. S. Sari, and A. Abdelkef. 2020. Nonlocal Timoshenko representation and analysis of multi-layered functionally graded nanobeams. Microsystem Technologies doi:10.1007/s00542-020-04970-y.
  • Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2020. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines 48 (4):403–32. doi:10.1080/15397734.2019.1624176.
  • Gholipour, A., and M. H. Ghayesh. 2020. Nonlinear coupled mechanics of functionally graded nanobeams. International Journal of Engineering Science 150:103221. doi:10.1016/j.ijengsci.2020.103221.
  • Ghorbani, K., A. Rajabpour, and M. Ghadiri. 2021. Determination of carbon nanotubes size-dependent parameters: Molecular dynamics simulation and nonlocalstrain gradient continuum shell model. Mechanics Based Design of Structures and Machines 49 (1):103–20. doi:10.1080/15397734.2019.1671863.
  • Green, A. E., and P. M. Naghdi. 1991. A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 432 (1885):171–94.
  • Green, A. E., and P. M. Naghdi. 1992. On undamped heat waves in an elastic solid. Journal of Thermal Stresses 15 (2):253–64. doi:10.1080/01495739208946136.
  • Green, A. E., and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Hamidi, B. A., S. A. Hosseini, R. Hassannejad, and F. Khosravi. 2020. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses 43 (2):157–74. doi:10.1080/01495739.2019.1666694.
  • Hendy, M. H., S. I. El-Attar, and M. A. Ezzat. 2019. On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source. Microsystem Technologies 26 (2):595–608. doi:10.1007/s00542-019-04519-8.
  • Hosseini, S. A. H., and O. Rahmani. 2016. Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity. Journal of Thermal Stresses 39 (10):1252–67. doi:10.1080/01495739.2016.1215731.
  • Khiem, N. T., H. T. Tran, and D. Nam. 2020. Modal analysis of cracked continuous Timoshenko beam made of functionally graded material. Mechanics Based Design of Structures and Machines 48 (4):459–79. doi:10.1080/15397734.2019.1639518.
  • Li, Y., and T. He. 2019. A generalized thermoelastic diffusion problem with memory-dependent derivative. Mathematics and Mechanics of Solids 24 (5):1438–62. doi:10.1177/1081286518797988.
  • Lin, M. X., S. Y. Lee, and C. K. Chen. 2019. Nonlocal effect on the pull-in instability analysis of graphene sheet nanobeam actuator. Journal of Mechanics 35 (5):767–78. doi:10.1017/jmech.2018.41.
  • Li, M., H. X. Tang, and M. L. Roukes. 2007. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnology 2 (2):114–20. doi:10.1038/nnano.2006.208.
  • Liu, T. J., F. Yang, H. Yu, and S. M. Aizikovich. 2021. Axisymmetric adhesive contact problem for functionally graded materials coating based on the linear multi-layered model. Mechanics Based Design of Structures and Machines 49 (1):41–58. doi:10.1080/15397734.2019.1666721.
  • Lord, H. W., and Y. H. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Miller, K. S., and B. Ross. 1993. An introduction to the fractional integrals and derivatives, theory and applications. New York: John Wiley and Sons Inc.
  • Moheimani, R., and H. Dalir. 2020. Static and dynamic solutions of functionally graded micro/nanobeams under external loads using non-local theory. Vibration 3 (2):51–69. doi:10.3390/vibration3020006.
  • Mondal, S., A. Sur, and M. Kanoria. 2019a. A memory response in the vibration of a microscale beam induced by laser pulse. Journal of Thermal Stresses 42 (11):1415–31. doi:10.1080/01495739.2019.1629854.
  • Mondal, S., P. Pal, and M. Kanoria. 2019b. Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memorydependent derivative. Acta Mechanica 230 (1):179–99. doi:10.1007/s00707-018-2307-z.
  • Podlubny, I. 1999. Fractional differential equations. New York: Academic Press.
  • Povstenko, Y. Z. 2009. Thermoelasticity that uses fractional heat conduction equation. Journal of Mathematical Sciences 162 (2):296–305. doi:10.1007/s10958-009-9636-3.
  • Rahaeifard, M., M. H. Kahrobaiyan, M. T. Ahmadian, and K. Firoozbakhsh. 2013. Strain gradient formulation of functionally graded nonlinear beams. International Journal of Engineering Science 65:49–63. doi:10.1016/j.ijengsci.2013.02.002.
  • Rahmani, O., S. A. H. Hosseini, I. Ghoytasi, and H. Golmohammadi. 2017a. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties. Applied Physics A 123 (1):4. doi:10.1007/s00339-016-0591-9.
  • Rahmani, O., A. Mohammadi Niaei, S. A. H. Hosseini, and M. Shojaei. 2017b. In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method. Superlattices and Microstructures 101:23–39. doi:10.1016/j.spmi.2016.11.018.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–602. doi:10.1080/01495739808956165.
  • Shabani, S., and Y. Cunedioglu. 2020. Free vibration analysis of functionally graded beams with cracks. Journal of Applied and Computational Mechanics 6 (4):908–19.
  • Sharma, J. N., and R. Kaur. 2015. Response of anisotropic thermoelastic micro-beam resonators under dynamic loads. Applied Mathematical Modelling 39 (10–11):2929–41. doi:10.1016/j.apm.2014.11.019.
  • Sun, W., and J. Wang. 2018. Reconstruct the heat conduction model with memory dependent derivative. Applied Mathematics 9 (9):1072–80. doi:10.4236/am.2018.99072.
  • Sur, A., S. Mondal, and M. Kanoria. 2020. Memory response in the vibration of a micro-scale beam due to time-dependent thermal loading. Mechanics Based Design of Structures and Machines doi:10.1080/15397734.2020.1745078.
  • Sur, A., P. Pal, S. Mondal, and M. Kanoria. 2019. Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mechanica 230 (5):1607–24. doi:10.1007/s00707-018-2357-2.
  • Tzou, D. Y. 1992. Thermal shock phenomena under high rate response in solids. Annual Review of Heat Transfer 4 (4):111–85. doi:10.1615/AnnualRevHeatTransfer.v4.50.
  • Tzou, D. Y. 1995a. A unified field approach for heat conduction from macro-to micro-scales. Journal of Heat Transfer 117 (1):8–16. doi:10.1115/1.2822329.
  • Tzou, D. Y. 1995b. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer 38 (17):3231–40. doi:10.1016/0017-9310(95)00052-B.
  • Wang, J. L., and H. F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–7. doi:10.1016/j.camwa.2011.04.028.
  • Xue, Z. N., Z. T. Chen, and X. G. Tian. 2018. Transient thermal stress analysis for a circumferentially cracked hollow cylinder based on memory-dependent heat conduction model. Theoretical and Applied Fracture Mechanics 96:123–33. doi:10.1016/j.tafmec.2018.04.008.
  • Youssef, H. M., and A. A. El-Bary. 2018. The reference temperature dependence of Young’s modulus of two-temperature thermoelastic damping of gold nano-beam. Mechanics of Time-Dependent Materials 22 (4):435–45. doi:10.1007/s11043-017-9365-9.
  • Youssef, H. M., A. A. El-Bary, H. M. Atef, and A. H. El-Sharif. 2021. Numerical analysis of the damage mechanics variable and vibration of a viscothermoelastic microbeam with variable thermal conductivity. Journal of Vibroengineering 32(1):75–95. doi:10.21595/jve.2020.21456.
  • Youssef, H. M., K. A. Elsibai, and A. A. El-Bary. 2015. Vibration of cylindrical gold nano-beam with fractional order thermoelastic waves subjected to thermal shock. Journal of Computational and Theoretical Nanoscience 12 (12):5407–11. doi:10.1166/jctn.2015.4535.
  • Yu, Y. J., W. Hu, and X. G. Tian. 2014. A novel general-ized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–34. doi:10.1016/j.ijengsci.2014.04.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.