276
Views
15
CrossRef citations to date
0
Altmetric
Articles

Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells

, ORCID Icon & ORCID Icon
Pages 2177-2199 | Received 06 Oct 2020, Accepted 12 Feb 2021, Published online: 03 Mar 2021

References

  • Ahmadi, M., M. Talebitooti, and R. Talebitooti. 2020. Analytical investigation on sound transmission loss of functionally graded nanocomposite cylindrical shells reinforced by carbon nanotubes. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2020.1805333.
  • Anirudh, B., M. Ganapathi, C. Anant, and O. Polit. 2019. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Composite Structures 222:110899. doi:10.1016/j.compstruct.2019.110899.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Ansari, R., R. Hassani, R. Gholami, and H. Rouhi. 2020a. Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. International Journal of Non-Linear Mechanics 126:103556. doi:10.1016/j.ijnonlinmec.2020.103556.
  • Ansari, R., R. Hassani, R. Gholami, and H. Rouhi. 2020b. Thermal postbuckling analysis of FG-CNTRC plates with various shapes and temperature-dependent properties using the VDQ-FEM technique. Aerospace Science and Technology 106:106078. doi:10.1016/j.ast.2020.106078.
  • Ansari, R., T. Pourashraf, and R. Gholami. 2015. An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Structures 93:169–76. doi:10.1016/j.tws.2015.03.013.
  • Ashby, M. F., A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. Wadley. 2002. Metal foams: A design guide-Butterworth-Heinemann, Oxford, UK, ISBN 0-7506-7219-6, Published 2000, Hardback, 251 pp., $75.00. Materials and Design 1:119.
  • Atif, R., I. Shyha, and F. Inam. 2016. Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. Polymers 8 (8):281. doi:10.3390/polym8080281.
  • Banhart, J. 2001. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science 46 (6):559–632. doi:10.1016/S0079-6425(00)00002-5.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2020. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2020.1766494.
  • Cong, P. H., and N. D. Duc. 2018. New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mechanica 229 (9):3651–70. doi:10.1007/s00707-018-2178-3.
  • Dong, Y., L. He, L. Wang, Y. Li, and J. Yang. 2018a. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study. Aerospace Science and Technology 8283:466–78. doi:10.1016/j.ast.2018.09.037.
  • Dong, Y., X. Li, K. Gao, Y. Li, and J. Yang. 2020. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: Effects of spinning motion and thermal environment. Nonlinear Dynamics 99 (2):981–1000. doi:10.1007/s11071-019-05297-8.
  • Dong, Y., Y. Li, D. Chen, and J. Yang. 2018b. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi:10.1016/j.compositesb.2018.03.009.
  • Feng, C., S. Kitipornchai, and J. Yang. 2017. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering 110:132–40. doi:10.1016/j.compositesb.2016.11.024.
  • Gholami, R., and R. Ansari. 2018a. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading. The European Physical Journal Plus 133 (2):56. doi:10.1140/epjp/i2018-11874-6.
  • Gholami, R., and R. Ansari. 2018b. Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Engineering Structures 156:197–209. doi:10.1016/j.engstruct.2017.11.019.
  • Gholami, R., and R. Ansari. 2019. Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets. International Journal for Multiscale Computational Engineering 17 (1):45–63. doi:10.1615/IntJMultCompEng.2019029156.
  • Hao, Y., L. Chen, W. Zhang, and J. Lei. 2008. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. Journal of Sound and Vibration 312 (45):862–92. doi:10.1016/j.jsv.2007.11.033.
  • Hao, Y., W. Zhang, and J. Yang. 2011. Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Composites Part B: Engineering 42 (3):402–13. doi:10.1016/j.compositesb.2010.12.010.
  • Hasrati, E., R. Ansari, and J. Torabi. 2018. A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells. Applied Mathematical Modelling 53:653–72. doi:10.1016/j.apm.2017.08.027.
  • Jansen, E. 2007. The effect of geometric imperfections on the vibrations of anisotropic cylindrical shells. Thin-Walled Structures 45 (3):274–82. doi:10.1016/j.tws.2007.02.014.
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Lefebvre, L. P., J. Banhart, and D. C. Dunand. 2008. Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials 10 (9):775–87. doi:10.1002/adem.200800241.
  • Li, K., D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, and M. Liu. 2018. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Composite Structures 204:114–30. doi:10.1016/j.compstruct.2018.07.059.
  • Li, Z., R. J. Young, N. R. Wilson, I. A. Kinloch, C. Vallés, and Z. Li. 2016. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology 123:125–33. doi:10.1016/j.compscitech.2015.12.005.
  • Liu, D., S. Kitipornchai, W. Chen, and J. Yang. 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures 189:560–9. doi:10.1016/j.compstruct.2018.01.106.
  • Loy, C., K. Lam, and J. Reddy. 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences 41 (3):309–24. doi:10.1016/S0020-7403(98)00054-X.
  • Mao, J., H. Lu, W. Zhang, and S. Lai. 2020. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Composite Structures 236:111813. doi:10.1016/j.compstruct.2019.111813.
  • Mao, J.-J., and W. Zhang. 2018. Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Composite Structures 203:551–65. doi:10.1016/j.compstruct.2018.06.076.
  • Mao, J.-J., and W. Zhang. 2019. Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Composite Structures 216:392–405. doi:10.1016/j.compstruct.2019.02.095.
  • Mirzaei, M. 2019. Vibrations of FG-CNT reinforced composite cylindrical panels with cutout. Mechanics Based Design of Structures and Machines 1–21. doi:10.1080/15397734.2019.1705165.
  • Mittal, G., V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee. 2015. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry 21:11–25. doi:10.1016/j.jiec.2014.03.022.
  • Nguyen, L. B., N. V. Nguyen, C. H. Thai, A. Ferreira, and H. Nguyen-Xuan. 2019. An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Composite Structures 214:227–45. doi:10.1016/j.compstruct.2019.01.077.
  • Nguyen, N. V., H. Nguyen-Xuan, D. Lee, and J. Lee. 2020. A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin-Walled Structures 150:106684. doi:10.1016/j.tws.2020.106684.
  • Pellicano, F. 2007. Vibrations of circular cylindrical shells: Theory and experiments. Journal of Sound and Vibration 303 (12):154–70. doi:10.1016/j.jsv.2007.01.022.
  • Phan, D.-H. 2020. Isogeometric analysis of functionally-graded graphene platelets reinforced porous nanocomposite plates using a refined plate theory. International Journal of Structural Stability and Dynamics 20 (07):2050076. doi:10.1142/S0219455420500765.
  • Qin, J., Q. Chen, C. Yang, and Y. Huang. 2016. Research process on property and application of metal porous materials. Journal of Alloys and Compounds 654:39–44. doi:10.1016/j.jallcom.2015.09.148.
  • Qin, Z., F. Chu, and J. Zu. 2017. Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study. International Journal of Mechanical Sciences 133:91–9. doi:10.1016/j.ijmecsci.2017.08.012.
  • Radebe, I. S., G. A. Drosopoulos, and S. Adali. 2019. Buckling of non-uniformly distributed graphene and fibre reinforced multiscale angle-ply laminates. Meccanica 54 (14):2263–79. doi:10.1007/s11012-019-01067-3.
  • Rafiee, M., F. Nitzsche, and M. Labrosse. 2018. Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration. International Journal of Non-Linear Mechanics 103:104–12. doi:10.1016/j.ijnonlinmec.2018.05.004.
  • Rafiee, M., J. Rafiee, Z.-Z. Yu, and N. Koratkar. 2009a. Buckling resistant graphene nanocomposites. Applied Physics Letters 95 (22):223103. doi:10.1063/1.3269637.
  • Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar. 2009b. Enhanced mechanical properties of nanocomposites at low graphene content. Acs Nano 3 (12):3884–90. doi:10.1021/nn9010472.
  • Rahimi, A., A. Alibeigloo, and M. Safarpour. 2020. Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. Journal of Vibration and Control 26 (1920):1627–45. doi:10.1177/1077546320902340.
  • Raju, K. K., and G. V. Rao. 1976. Large amplitude asymmetric vibrations of some thin shells of revolution. Journal of Sound and Vibration 44:327–33. doi:10.1016/0022-460X(76)90505-8.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  • Reddy, R. M. R., W. Karunasena, and W. Lokuge. 2018. Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions. Aerospace Science and Technology 78:147–56. doi:10.1016/j.ast.2018.04.019.
  • Saidi, A. R., R. Bahaadini, and K. Majidi-Mozafari. 2019. On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Composites Part B: Engineering 164:778–99. doi:10.1016/j.compositesb.2019.01.074.
  • Shen, H.-S., and Y. Xiang. 2018. Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments. Computer Methods in Applied Mechanics and Engineering 330:64–82. doi:10.1016/j.cma.2017.10.022.
  • Wang, A., H. Chen, Y. Hao, and W. Zhang. 2018. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results in Physics 9:550–9. doi:10.1016/j.rinp.2018.02.062.
  • Wang, Y., and D. Wu. 2017. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerospace Science and Technology 66:83–91. doi:10.1016/j.ast.2017.03.003.
  • Wang, Y. Q., C. Ye, and J. W. Zu. 2019. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerospace Science and Technology 85:359–70. doi:10.1016/j.ast.2018.12.022.
  • Wang, Y. Q., Y. F. Liu, and J. W. Zu. 2019. On scale-dependent vibration of circular cylindrical nanoporous metal foam shells. Microsystem Technologies 25 (7):2661–74. doi:10.1007/s00542-018-4262-y.
  • Wu, H., J. Yang, and S. Kitipornchai. 2020. Mechanical analysis of functionally graded porous structures: A review. International Journal of Structural Stability and Dynamics 20 (13):2041015. doi:10.1142/S0219455420410151.
  • Yazdi, A. A. 2019. Nonlinear aeroelastic stability analysis of three-phase nano-composite plates. Mechanics Based Design of Structures and Machines 47 (6):753–68. doi:10.1080/15397734.2019.1610436.
  • Young, R. J., I. A. Kinloch, L. Gong, and K. S. Novoselov. 2012. The mechanics of graphene nanocomposites: A review. Composites Science and Technology 72 (12):1459–76. doi:10.1016/j.compscitech.2012.05.005.
  • Zhang, W., J. Yang, and Y. Hao. 2010. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dynamics 59 (4):619–60. doi:10.1007/s11071-009-9568-y.
  • Zhang, W., Y. Hao, and J. Yang. 2012. Nonlinear dynamics of FGM circular cylindrical shell with clamped–clamped edges. Composite Structures 94 (3):1075–86. doi:10.1016/j.compstruct.2011.11.004.
  • Zhao, S., Z. Yang, S. Kitipornchai, and J. Yang. 2020a. Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin-Walled Structures 147:106491. doi:10.1016/j.tws.2019.106491.
  • Zhao, S., Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, and J. Yang. 2020b. Functionally graded graphene reinforced composite structures: A review. Engineering Structures 210:110339. doi:10.1016/j.engstruct.2020.110339.
  • Zhou, Y., F. Pervin, L. Lewis, and S. Jeelani. 2007. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials Science and Engineering: A 452453:657–64. doi:10.1016/j.msea.2006.11.066.
  • Zhou, Z., Y. Ni, Z. Tong, S. Zhu, J. Sun, and X. Xu. 2019. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. International Journal of Mechanical Sciences 151:537–50. doi:10.1016/j.ijmecsci.2018.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.