1,236
Views
14
CrossRef citations to date
0
Altmetric
Articles

Vibration control of cantilever beam using poling tuned piezoelectric actuator

ORCID Icon, ORCID Icon, &
Pages 2217-2240 | Received 29 Sep 2020, Accepted 14 Feb 2021, Published online: 01 Mar 2021

Reference

  • Abdelkefi, H., H. Khemakhem, A. Simon, and J. Darriet. 2008. X-ray diffraction study of Ba0.985Na0.015Ti0.985Nb0.015O3, Ba0.6Na0.4Ti0.6Nb0.4O3 and Ba0.3Na0.7Ti0.3Nb0.7O3 compositions. Journal of Alloys and Compounds 463 (1–2):423–7. doi:10.1016/j.jallcom.2007.09.031.
  • Bechmann, R. 1956. Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. Journal of the Acoustical Society of America 28 (3):347–50. doi:10.1121/1.1908324.
  • Bent, A. A., and N. W. Hagood. 1997. Piezoelectric fiber composites with interdigitated electrodes. Journal of Intelligent Material Systems and Structures 8 (11):903–19. doi:10.1177/1045389X9700801101.
  • Bowen, C. R., L. J. Nelson, R. Stevens, M. G. Cain, and M. Stewart. 2006. Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites. Journal of Electroceramics 16 (4):263–9. doi:10.1007/s10832-006-9862-8.
  • Caliò, R., U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. de Petris, and C. M. Oddo. 2014. Piezoelectric energy harvesting solutions. Sensors (Basel, Switzerland) 14 (3):4755–90. doi:10.3390/s140304755.
  • Cao, H., V. H. Schmidt, R. Zhang, W. Cao, and H. Luo. 2004. Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 Single Crystal. Journal of Applied Physics 96 (1):549–54. doi:10.1063/1.1712020.
  • Chang, W. Y., C. Chang Chung, C. Luo, T. Kim, Y. Yamashita, J. L. Jones, and X. Jiang. 2018. Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal poled using alternating current. Materials Research Letters 6 (10):537–44. doi:10.1080/21663831.2018.1498812.
  • Chattaraj, N., and R. Ganguli. 2018. Performance improvement of a piezoelectric bimorph actuator by tailoring geometry. Mechanics of Advanced Materials and Structures 25 (10):829–35. doi:10.1080/15376494.2017.1308590.
  • De Abreu, G. L. C. M., and J. F. Ribeiro. 2002. A self-organizing fuzzy logic controller for the active control of flexible structures using piezoelectric actuators. Applied Soft Computing 1 (4):271–83. doi:10.1016/S1568-4946(02)00020-0.
  • De Marqui, C. 2016. Piezoelectric energy harvesting. In Dynamics of smart systems and structures: Concepts and applications, 267–88. Cham, Switzerland: Springer. doi:10.1007/978-3-319-29982-2_11.
  • De Souza, L. C. G. 2006. Design of satellite control system using optimal nonlinear theory. Mechanics Based Design of Structures and Machines 34 (4):351–64. doi:10.1080/15397730601044853.
  • Dosch, J. J., D. J. Inman, and E. Garcia. 1992. A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures 3 (1):166–85. doi:10.1177/1045389X9200300109.
  • Dutoit, N. E., W. Brian L, and K. I. M. Sang-Gook. 2006. Design consideration for MEMS-scale piezoelectric mechanical vibration energy havesters. Integrated Ferroelectrics 71 (1): 121–60.
  • Elias, S., and V. Matsagar. 2017. Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control 44:129–56. doi:10.1016/j.arcontrol.2017.09.015.
  • Group, I., and S. Materials. 2008. From smart materials to piezo-composites. In Electromechanical properties in composite based on ferroelectrics, 1–10. London, UK: Springer. doi:10.1007/978-1-84882-000-5_1.
  • Guo, H., C. Ma, X. Liu, and X. Tan. 2013. Electrical poling below coercive field for large piezoelectricity. Applied Physics Letters 102 (9):092902. doi:10.1063/1.4794866.
  • Huang, Y. H., Y. J. Wu, W. J. Qiu, J. Li, and X. M. Chen. 2015. Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. Journal of the European Ceramic Society 35 (5):1469–76. doi:10.1016/j.jeurceramsoc.2014.11.022.
  • Hwang, S. J., H. J. Jung, J. H. Kim, J. Hwan Ahn, D. Song, Y. Song, H. L. Lee, S. P. Moon, H. Park, and T. H. Sung. 2015. Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Current Applied Physics 15 (6):669–74. doi:10.1016/j.cap.2015.02.009.
  • Jeon, Y. B., R. Sood, J. H. Jeong, and S. G. Kim. 2005. MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical 122 (1):16–22. doi:10.1016/j.sna.2004.12.032.
  • Kasyap, A., A. Phipps, M. Sheplak, K. Ngo, T. Nishida, and L. Cattafesta. 2006. Lumped element modeling of piezoelectric cantilever beams for vibrational energy reclamation. American Society of Mechanical Engineers, Aerospace Division (Publication) AD 2006:621–7. doi:10.1115/IMECE2006-14879.
  • Kim, M., J. Dugundji, and B. L. Wardle. 2015. Effect of electrode configurations on piezoelectric vibration energy harvesting performance. Smart Materials and Structures 24 (4):045026. doi:10.1088/0964-1726/24/4/045026.
  • Kiran, R., A. Kumar, R. Kumar, and R. Vaish. 2018. Poling direction driven large enhancement in piezoelectric performance. Scripta Materialia 151:76–81. doi:10.1016/j.scriptamat.2018.03.029.
  • Klimov, N. N. 2012. Electromechanical properties of graphene drumheads. Science 1557:1697–706. doi:10.1126/science.1220335.
  • Kozioł, M., and P. Cupiał. 2020. The influence of the active control of internal damping on the stability of a cantilever rotor with a disc. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1717965.
  • Lin, J., and W. Z. Liu. 2006. Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. Journal of Sound and Vibration 296 (3):567–82. doi:10.1016/j.jsv.2006.01.066.
  • Ma, L., X. Liu, and A. Shavalipour. 2020. Active vibration control responses of a smart microshell reinforced with graphene nanoplatelets and subjected to external force. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1815543.
  • Nestorović, T., D. Marinković, G. Chandrashekar, Z. Marinković, and M. Trajkov. 2012. Implementation of a user defined piezoelectric shell element for analysis of active structures. Finite Elements in Analysis and Design 52:11–22. doi:10.1016/j.finel.2011.11.006.
  • Ofri, A., W. Tanchum, and H. Guterman. 1996. Active control for large space structure by fuzzy logic controllers. Proceedings of IEEE Convention of Electrical & Electronics Engineers in Israel, 515–8. doi:10.1109/eeis.1996.567029.
  • Paquin, S., and Y. St-Amant. 2010. Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Materials and Structures 19 (10):105020. doi:10.1088/0964-1726/19/10/105020.
  • Roundy, S., P. K. Wright, and J. Rabaey. 2003. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26 (11):1131–44. doi:10.1016/S0140-3664(02)00248-7.
  • Roy, P. K., and N. Ganesan. 1995. Transient response of a cantilever beam subjected to an impulse load. Journal of Sound and Vibration 183 (5):873–80. doi:10.1006/jsvi.1995.0291.
  • Sampaio, R., R. Lima, and P. Hagedorn. 2018. Lagrangians for electromechanical systems. Lagrangians for Electromechanical Systems 36 (42):1911–34. .
  • Sharma, M., S. P. Singh, and B. L. Sachdeva. 2005. Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches. Smart Materials and Structures 14 (5):1017–24. doi:10.1088/0964-1726/14/5/040.
  • Sharma, S., A. Kumar, R. Kumar, M. Talha, and R. Vaish. 2020. Active vibration control of smart structure using poling tuned piezoelectric material. Journal of Intelligent Material Systems and Structures 31 (10):1298–313. doi:10.1177/1045389X20917456.
  • Shin, S. H., M. H. Lee, J. Y. Jung, J. H. Seol, and J. Nah. 2013. Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO-ZnO p-n junction formation. Journal of Materials Chemistry C 1 (48):8103–7. doi:10.1039/c3tc31664e.
  • Umeda, M., K. Nakamura, and S. Ueha. 1996. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Japanese Journal of Applied Physics 35 (Part 1, No. 5B):3267–73. doi:10.1143/JJAP.35.3267.
  • Watanabe, S., T. Fujiu, and T. Fujii. 1995. Effect of poling on piezoelectric properties of lead zirconate titanate thin films formed by sputtering. Applied Physics Letters 66 (12):1481–3. doi:10.1063/1.113661.
  • Wenzhong, Q., S. Jincai, and Q. Yang. 2004. Active control of vibration using a fuzzy control method. Journal of Sound and Vibration 275 (3–5):917–30. doi:10.1016/S0022-460X(03)00795-8.
  • Yan, T. H., X. D. Chen, W. F. Dou, and R. M. Lin. 2008. Feedback control of disk vibration and flutter by distributed self-sensing piezoceramic actuators. Mechanics Based Design of Structures and Machines 36 (3):283–305. doi:10.1080/15397730802400433.
  • Yang, Z., Y. Qing, L. Zuo, and J. Zu. 2017. Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Conversion and Management 148:260–6. doi:10.1016/j.enconman.2017.05.073.
  • Zhang, Z., J. Xu, L. Yang, S. Liu, J. Xiao, R. Zhu, X. Li, X. Wang, and H. Luo. 2019. The performance enhancement and temperature dependence of piezoelectric properties for Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal by alternating current polarization. Journal of Applied Physics 125 (3):034104–7. doi:10.1063/1.5052709.
  • Zhou, Y., T. Nyberg, G. Xiong, and S. Li. 2020. State space finite element analysis for piezoelectric laminated curved beam with variable curvature. Mechanics of Advanced Materials and Structures 27 (4):265–73. doi:10.1080/15376494.2018.1472323.
  • Zorić, N. D., A. M. Simonović, Z. S. Mitrović, S. N. Stupar, A. M. Obradović, and N. S. Lukić. 2014. Free vibration control of smart composite beams using particle swarm optimized self-tuning fuzzy logic controller. Journal of Sound and Vibration 333 (21):5244–68. doi:10.1016/j.jsv.2014.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.