301
Views
3
CrossRef citations to date
0
Altmetric
Articles

A third-order polynomial for the free vibration response of 3D braided curved panels using various boundary conditions

ORCID Icon, &
Pages 2279-2301 | Received 27 Aug 2020, Accepted 21 Feb 2021, Published online: 12 Mar 2021

References

  • Adhikari, B., and B. N. Singh. 2018. An efficient higher order non-polynomial Quasi 3-D theory for dynamic responses of laminated composite plates. Composite Structures 189:386–97. doi:10.1016/j.compstruct.2017.10.044.
  • Adhikari, B., and B. N. Singh. 2019. Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory. Mechanics Based Design of Structures and Machines 47 (4):399–429. doi:10.1080/15397734.2018.1555965.
  • Akbari, H., M. Azadi, and H. Fahham. 2020. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mechanics Based Design of Structures and Machines :1–19. doi:10.1080/15397734.2020.1748051.
  • Amirabadi, H., F. Farhatnia, S. A. Eftekhari, and R. Hosseini-Ara. 2020. Free vibration analysis of rotating functionally graded GPL-reinforced truncated thick conical shells under different boundary conditions. Mechanics Based Design of Structures and Machines :1–32. doi:10.1080/15397734.2020.1822183.
  • Arefi, M. 2019. Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells. Mechanics Based Design of Structures and Machines :1–30. doi:10.1080/15397734.2019.1698435.
  • Chakravorty, D., J. N. Bandyopadhyay, and P. K. Sinha. 1996. Finite element free vibration analysis of doubly curved laminated composite shells. Journal of Sound and Vibration 191 (4):491–504. doi:10.1006/jsvi.1996.0136.
  • Chandrashekhara, K. 1989. Free vibrations of anisotropic laminated doubly curved shells. Computers & Structures 33 (2):435–40. doi:10.1016/0045-7949(89)90015-1.
  • Chaubey, A. K., A. Kumar, and A. Chakrabarti. 2018. Novel shear deformation model for moderately thick and deep laminated composite conoidal shell. Mechanics Based Design of Structures and Machines 46 (5):650–68. doi:10.1080/15397734.2017.1422433.
  • Chen, L., X. M. Tao, and C. L. Choy. 1999. Mechanical analysis of 3-D braided composites by the finite multiphase element method. Composites Science and Technology 59 (16):2383–91. doi:10.1016/S0266-3538(99)00087-1.
  • Esmailpoor Hajilak, Z., J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, and H. Safarpour. 2019. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mechanics Based Design of Structures and Machines 47 (5):521–45. doi:10.1080/15397734.2019.1566743.
  • Huang, Z. M., and Y. X. Zhou. 2013. Correlation of the bridging model predictions for triaxial failure strengths of composites with experiments. Journal of Composite Materials 47 (6-7):697–731. doi:10.1177/0021998312453864.
  • Kalidindi, S. R., and A. Abusafieh. 1996. Longitudinal and transverse moduli and strengths of low angle 3-D braided composites. Journal of Composite Materials 30 (8):885–905. doi:10.1177/002199839603000802.
  • Kant, T., and K. Swaminathan. 2001. Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory. Composite Structures 53 (1):73–85. doi:10.1016/S0263-8223(00)00180-X.
  • Li, H., F. Pang, Y. Ren, X. Miao, and K. Ye. 2019. Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin-Walled Structures 144:106331. doi:10.1016/j.tws.2019.106331.
  • Li, H., F. Pang, X. Miao, and Y. Li. 2019. Jacobi–Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation. Computers & Mathematics with Applications 77 (2):427–40. doi:10.1016/j.camwa.2018.09.046.
  • Li, Z. M. 2011. Thermal postbuckling behavior of 3D braided rectangular plates. Journal of Thermal Stresses 34 (7):626–49. doi:10.1080/01495739.2011.581050.
  • Li, Z. M., W. Gu, and Y. X. Zhao. 2012. Postbuckling behavior of 3D braided rectangular plates subjected to biaxial compression. Journal of Aerospace Engineering 25 (4):680–90. doi:10.1061/(ASCE)AS.1943-5525.0000164.
  • Li, Z. M., and M. Wang. 2016. Large-amplitude vibration analysis of 3D braided composite cylindrical shells in an elastic medium. Journal of Aerospace Engineering 29 (1):04015029. doi:10.1061/(ASCE)AS.1943-5525.0000515.
  • Liu, T.,A. Wang,Q. Wang, andB. Qin. 2020. Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled Structures 148:106580. doi:10.1016/j.tws.2019.106580.
  • Liu, T., Z. M. Li, and Q. Zhang. 2017. Nonlinear vibration analysis of 3D braided composite cylindrical panels resting on elastic foundations in thermal environments. 21st International Conference on Composite Materials Xi’an, 20-25th August 2017.
  • Liu, T., Z. M. Li, and Q. Zhang. 2017. Nonlinear vibration analysis of 3D braided composite cylindrical panels resting on elastic foundations in thermal environments. ICCM International Conferences on Composite Materials:291–300.
  • Liu, Z., Y. Hou, Q. Zhao, and C. Li. 2020. A novel surrogate modeling strategy of the mechanical properties of 3D braided composites. Chinese Journal of Aeronautics 33 (10):2589–601
  • Maiti, D. K., and P. K. Sinha. 1996. Bending, free vibration and impact response of thick laminated composite plates. Computers & Structures 59 (1):115–29. doi:10.1016/0045-7949(95)00232-4.
  • Maji, P., M. Rout, and A. Karmakar. 2020. Free vibration response of carbon nanotube reinforced pretwisted conical shell under thermal environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (3):770–83.
  • Maji, P., M. Rout, and A. Karmakar. 2021. The free vibration response of temperature-dependent carbon nanotube-reinforced composite stiffened plate. Mechanics of Advanced Materials and Structures 0 (0):1–15.
  • Maji, P., and B. N. Singh. 2021. Free vibration responses of 3D braided rotating cylindrical shells based on third-order shear deformation. Composite Structures 260:113255. doi:10.1016/j.compstruct.2020.113255.
  • Nayak, A. N., and J. N. Bandyopadhyay. 2005. Free vibration analysis of laminated stiffened shells. Journal of Engineering Mechanics 131 (1):100–5. doi:10.1061/(ASCE)0733-9399(2005)131:1(100).
  • Noor, A. K. 1973. Free vibrations of multilayered composite plates. AIAA Journal 11 (7):1038–9. doi:10.2514/3.6868.
  • Panda, S. K., and B. N. Singh. 2013. Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers. Nonlinear Dynamics 74 (1-2):395–418. doi:10.1007/s11071-013-0978-5.
  • Phan, N. D., and J. N. Reddy. 1985. Analysis of laminated composite plates using a higher‐order shear deformation theory. International Journal for Numerical Methods in Engineering 21 (12):2201–19. doi:10.1002/nme.1620211207.
  • Pradyumna, S., and J. N. Bandyopadhyay. 2008. Static and free vibration analyses of laminated shells using a higher-order theory. Journal of Reinforced Plastics and Composites 27 (2):167–86. doi:10.1177/0731684407081385.
  • Reddy, J. N. 1984. Exact solutions of moderately thick laminated shells. Journal of Engineering Mechanics 110 (5):794–809. doi:10.1061/(ASCE)0733-9399(1984)110:5(794).
  • Reddy, J. N., and C. Liu. 1985. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science 23 (3):319–30. doi:10.1016/0020-7225(85)90051-5.
  • Shahmohammadi, M. A., P. Abdollahi, and H. Salehipour. 2020. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). Mechanics Based Design of Structures and Machines :1–25. doi:10.1080/15397734.2020.1822182.
  • Shokrieh, M. M., and M. S. Mazloomi. 2012. A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites. Composite Structures 94 (3):1005–15. doi:10.1016/j.compstruct.2011.09.010.
  • Singh, D. B., and B. N. Singh. 2016. Buckling analysis of three dimensional braided composite plates under uniaxial loading using Inverse Hyperbolic Shear Deformation Theory. Composite Structures 157:360–5. doi:10.1016/j.compstruct.2016.08.029.
  • Singh, D. B., and B. N. Singh. 2017a. Assessment and accuracy of new nonpolynomial shear deformation theories for static analysis of laminated and braided composite plates. Journal of Aerospace Engineering 30 (5):04017056. doi:10.1061/(ASCE)AS.1943-5525.0000768.
  • Singh, D. B., and B. N. Singh. 2017b. New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates. International Journal of Mechanical Sciences 131-132:265–77. doi:10.1016/j.ijmecsci.2017.06.053.
  • Sahoo, R., and B. N. Singh. 2014. A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Composite Structures 117:316–32. doi:10.1016/j.compstruct.2014.05.002.
  • Sun, H., S. Di, N. Zhang, N. Pan, and C. Wu. 2003. Micromechanics of braided composites via multivariable FEM. Computers & Structures 81 (20):2021–7. doi:10.1016/S0045-7949(03)00228-1.
  • Swain, P. K., D. K. Maiti, and B. N. Singh. 2020. Passive flutter suppression of damaged smart laminated composite plate using active fiber composite layer. Mechanics Based Design of Structures and Machines :1–20. doi:10.1080/15397734.2020.1723106.
  • Talebizadehsardari, P., H. Salehipour, D. Shahgholian-Ghahfarokhi, A. Shahsavar, and M. Karimi. 2020. Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution. Mechanics Based Design of Structures and Machines :1–27. doi:10.1080/15397734.2020.1744002.
  • Tsiptsis, I. N., and E. J. Sapountzakis. 2018. Isogeometric analysis for the dynamic problem of curved structures including warping effects. Mechanics Based Design of Structures and Machines 46 (1):66–84. doi:10.1080/15397734.2016.1275974.
  • Wang, X., C. Jin, and Z. Yuan. 2020. Free vibration of FGM annular sectorial plates with arbitrary boundary supports and large sector angles. Mechanics Based Design of Structures and Machines :1–21. doi:10.1080/15397734.2020.1717342.
  • Yang, J., and X. Huang. 2009. Dynamic stability behavior of 3D braided composite plates integrated with piezoelectric layers. Journal of Composite Materials 43 (20):2223–38. doi:10.1177/0021998309339219.
  • Yang, J. M., C. L. Ma, and T. W. Chou. 1986. Fiber Inclination Model of Three-Dimensional Textile Structural Composites. Journal of Composite Materials 20 (5):472–84. doi:10.1177/002199838602000505.
  • Zuorong, C., Z. Dechao, M. Lu, and L. Ye. 1999. Evaluation of elastic properties of 3-D (4-step) regular braided composites by a homogenisation method. Composite Structures 47 (1-4):477–82. doi:10.1016/S0263-8223(00)00026-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.