500
Views
8
CrossRef citations to date
0
Altmetric
Articles

Aluminum foam to improve crash safety performance: a numerical simulation approach for the automotive industry

&
Pages 3583-3597 | Received 22 Jan 2021, Accepted 04 May 2021, Published online: 20 May 2021

References

  • Alavi Nia, A., and M. Parsapour. 2014. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Structures 74:155–65. doi:10.1016/j.tws.2013.10.005.
  • Altenhof, W. 2002. 7th international LS-DYNA users conference experimental and numerical compressive testing of aluminum foam filled mild steel tubular hat sections. 3:19–28.
  • Altin, M., E. Acar, and M. A. Güler. 2018. Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns. Thin-Walled Structures 131:309–23. doi:10.1016/j.tws.2018.06.043.
  • ArcelorMittal. 2019. Customer Statements. https://automotive.arcelormittal.com/innovation/customer_statements.
  • CrashNet1. 2016. 2016 Chevrolet Silverado 2500HD Crew Cab Crash Test (Frontal Crash). https://www.youtube.com/watch?v=iP2pCX5rpgw&feature=youtu.be.
  • Dadrasi, A., M. Beynaghi, and S. Fooladpanjeh. 2019. Crashworthiness of thin-walled square steel columns reinforced based on fractal geometries. Transactions of the Indian Institute of Metals 72 (1):215–25. doi:10.1007/s12666-018-1475-9.
  • Dirgantara, T., A. Jusuf, E. O. Kurniati, L. Gunawan, and I. S. Putra. 2018. Crashworthiness analysis of foam–filled square column considering strain rate effect of the foam. Thin-Walled Structures 129 (August):365–80. doi:10.1016/j.tws.2018.04.004.
  • European Aluminium Association. 2013. Application of Car Body Structure. The Aluminium Automotive Manual 6 (2011):1–84.
  • Ghamarian, A., H. R. Zarei, and M. T. Abadi. 2011. Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes. Thin-Walled Structures 49 (10):1312–9. doi:10.1016/j.tws.2011.03.005.
  • Ghazifard, P., A. Najibi, and P. Alizadeh. 2019. Numerical crashworthiness analysis of graded layered foam-filled tubes under axial loading. Mechanics of Advanced Composite Structures 6 (1):57–64. doi:10.22075/macs.2019.16180.1168.
  • Gibson, L. J., and M. F. Ashby. 1999. Cellular solids: Structure and properties. 2nd ed. Cambridge, England: Cambridge University Press.
  • Goel, M. D. 2015. Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes. Thin-Walled Structures 90:1–11. doi:10.1016/j.tws.2015.01.004.
  • Goel, M. D., V. A. Matsagar, A. K. Gupta, and S. Marburg. 2013. Strain rate sensitivity of closed cell aluminium fly ash foam. Transactions of Nonferrous Metals Society of China 23 (4):1080–9. doi:10.1016/S1003-6326(13)62569-8.
  • Goyal, S., C. S. Anand, S. K. Sharma, and R. C. Sharma. 2019. Crashworthiness analysis of foam filled star shape polygon of thin-walled structure. Thin-Walled Structures 144106312. doi:10.1016/j.tws.2019.:.
  • Güden, M., and H. Kavi. 2006. Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes. Thin-Walled Structures 44 (7):739–50. doi:10.1016/j.tws.2006.07.003.
  • Haidar, S., S. Roy, and J. Ghose. 2016. Software simulation for mechanical properties of aluminium MMC foam. American Journal of Materials Synthesis and Processing 1 (1):1–9. doi:10.11648/j.ajmsp.20160101.11.
  • Hanssen, A. G., M. Langseth, and O. S. Hopperstad. 2001. Optimum design for energy absorption of square aluminum columns with aluminum foam filler. International Journal of Mechanical Sciences 43 (1):153–76. doi:10.1016/S0020-7403(99)00108-3.
  • Hillier, V. A. W., and P. Coombes. 2004. Hillier’s fundamentals of motor vehicle technology. 5th ed. Vol 3. UK: Nelson Thornes Ltd Academic.
  • Hirsch, J. 1997. Aluminium alloys for automotive Application. Materials Science Forum 242:33–50. doi:10.4028/www.scientific.net/MSF.242.33.
  • International technical conference on experimental safety vehicles. 1988. International Technical Conference on Experimental Safety Vehicles. Eleventh. 1st ed.
  • Jahani, M., H. Beheshti, and M. Heidari-Rarani. 2019. Effects of geometry, triggering and foam-filling on crashworthiness behaviour of a cylindrical composite crash box. International Journal of Automotive and Mechanical Engineering 16 (2):6568–87. doi:10.15282/ijame.16.2.2019.8.0495.
  • Kavi, H., A. K. Toksoy, and M. Guden. 2006. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient. Materials & Design 27 (4):263–9. doi:10.1016/j.matdes.2004.10.024.
  • Li, Z., Q. Yu, X. Zhao, M. Yu, P. Shi, and C. Yan. 2017. Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Advances in Mechanical Engineering 9 (8):1–21. doi:10.1177/1687814017702806.
  • Liu, W., J. Huang, X. Deng, Z. Lin, and L. Zhang. 2018. Crashworthiness analysis of cylindrical tubes filled with conventional and negative poisson’s ratio foams. Thin-Walled Structures 131 (October):297–308. doi:10.1016/j.tws.2018.07.004.
  • Malen, D. E. 2011. Design for crashworthiness. In Fundamentals of automobile body structure design. 1st ed. Warrendale, PA: SAE International.
  • Mamalis, A. G., D. E. Manolakos, M. B. Ioannidis, D. G. Chronopoulos, and P. K. Kostazos. 2009. On the crashworthiness of composite rectangular thin-walled tubes internally reinforced with aluminium or polymeric foams: experimental and numerical simulation. Composite Structures 89 (3):416–23. doi:10.1016/j.compstruct.2008.09.008.
  • Mirfendereski, L., M. Salimi, and S. Ziaei-Rad. 2008. Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. International Journal of Mechanical Sciences 50 (6):1042–57. doi:10.1016/j.ijmecsci.2008.02.007.
  • Mondal, D. P., M. D. Goel, and S. Das. 2009a. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam. Materials & Design 30 (4):1268–74. doi:10.1016/j.matdes.2008.06.059.
  • Mondal, D. P., M. D. Goel, and S. Das. 2009b. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science and Engineering: A 507 (1–2):102–9. doi:10.1016/j.msea.2009.01.019.
  • Nag, S. 2017. Ten BIG misconceptions about heavy cars and ligth cars. https://www.cartoq.com/ten-big-misconceptions-about-heavy-cars-and-light-cars/.
  • NHTSA. 2016. New car assesment program. laboratory test procedure for new car assesment program. https://www.federalregister.gov/documents/2015/12/16/2015-31323/new-car-assessment-program.
  • NHTSA. 2017. Crash simulation vehicle models. https://www.nhtsa.gov/crash-simulation-vehicle-models.
  • Pirmohammad, S., S. Ahmadi-Saravani, and J. Zakavi S. 2019. Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts. Journal of Central South University 26 (10):2729–45. doi:10.1007/s11771-019-4209-1.
  • Qin, R., J. Zhou, and B. Chen. 2019. Crashworthiness design and multiobjective optimization for hexagon honeycomb structure with functionally graded thickness. Advances in Materials Science and Engineering 2019:1–13. doi:10.1155/2019/8938696.
  • Redelbach, M., M. Klötzke, and H. E. Friedrich. 2012. Impact of lightweight design on energy consumption and cost effectiveness of alternative powertrain concepts. European Electric Vehicle Congress (EEVC). 2nd ed., 1 –8.
  • Renreng, I., F. Djamaluddin, and F. Furqani. 2020. Energy absorption analysis of aluminum filled foam tube under axial load using finite element method with cross section variations. IOP Conference Series: Materials Science and Engineering 875:012060. doi:10.1088/1757-899X/875/1/012060.
  • Rogala, M. 2020. Neural networks in crashworthiness analysis of thin-walled profile with foam filling. Advances in Science and Technology Research Journal 14 (3):93–9. doi:10.12913/22998624/120989.
  • Santosa, S. P., T. Wierzbicki, A. G. Hanssen, and M. Langseth. 2000. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering 24 (5):509–34. doi:10.1016/S0734-743X(99)00036-6.
  • Seitzberger, M., F. G. Rammerstorfer, R. Gradinger, H. P. Degischer, M. Blaimschein, and C. Walch. 2000. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures 37 (30):4125–47. doi:10.1016/S0020-7683(99)00136-5.
  • Song, H. W., Z. J. Fan, G. Yu, Q. C. Wang, and A. Tobota. 2005. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures 42 (9–10):2575–600. doi:10.1016/j.ijsolstr.2004.09.050.
  • Soni, S., and S. K. Pradhan. 2020. Improving crash worthiness and dynamic performance of frontal plastic automotive body components. Materials Today: Proceedings 27:2308–13. doi:10.1016/j.matpr.2019.09.118.
  • Sun, G., G. Li, S. Hou, S. Zhou, W. Li, and Q. Li. 2010. Crashworthiness design for functionally graded foam-filled thin-walled structures. Materials Science and Engineering A 527:1911–19. doi:10.1016/j.msea.2009.11.022.
  • Sun, G., Z. Wang, H. Yu, Z. Gong, and Q. Li. 2019. Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures. Composite Structures 209 (February):535–47. doi:10.1016/j.compstruct.2018.10.051.
  • Tarlochan, F., F. Samer, A. M. S. Hamouda, S. Ramesh, and K. Khalid. 2013. Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures 71 (October):7–17. doi:10.1016/j.tws.2013.04.003.
  • Yin, H., G. Wen, Z. Liu, and Q. Qing. 2014. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Structures 75:8–17. doi:10.1016/j.tws.2013.10.022.
  • Yuen, S. C. K., G. N. Nurick, S. Piu, and G. Ebrahim. 2014. Response of filled thin-walled square tubes to axial impact load. Applied Mechanics and Materials 566:586–92. www.scientific.net/AMM.566.586.
  • Zarei, H. R., and M. Kröger. 2008. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures 46 (2):214–21. doi:10.1016/j.tws.2007.07.016.
  • Zhang, C. J., Y. Feng, and X. B. Zhang. 2010. Mechanical properties and energy absorption properties of aluminum foam-filled square tubes. Transactions of Nonferrous Metals Society of China ( China ) 20 (8):1380–6. doi:10.1016/S1003-6326(09)60308-3.
  • Zhang, Z., W. Sun, Y. Zhao, and S. Hou. 2018c. Crashworthiness of different composite tubes by experiments and simulations. Composites Part B: Engineering 143 (June):86–95. doi:10.1016/j.compositesb.2018.01.021.
  • Zhang, Y., X. Xu, S. Liu, T. Chen, and Z. Hu. 2018a. Crashworthiness design for bi-graded composite circular structures. Construction and Building Materials 168 (April): 633–49. doi:10.1016/j.conbuildmat.2018.02.159.
  • Zhang, Y., X. Xu, G. Sun, X. Lai, and Q. Li. 2018b. Nondeterministic optimization of tapered sandwich column for crashworthiness. Thin-Walled Structures 122 (January):193–207. doi:10.1016/j.tws.2017.09.028.
  • Zhu, G., Z. Wang, X. Huo, A. Cheng, G. Li, and C. Zhou. 2017. Experimental and numerical investigation into axial compressive behaviour of thin-walled structures filled with foams and composite skeleton. International Journal of Mechanical Sciences 122:104–19. doi:10.1016/j.ijmecsci.2016.12.019.
  • Zhu, G., Z. Zhao, P. Hu, G. Luo, X. Zhao, and Q. Yu. 2021. On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP Skeleton. Thin-Walled Structures 160:107390. doi:10.1016/j.tws.2020.107390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.