306
Views
8
CrossRef citations to date
0
Altmetric
Articles

Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material

ORCID Icon & ORCID Icon
Pages 3620-3631 | Received 02 Jan 2021, Accepted 14 May 2021, Published online: 15 Jun 2021

References

  • Aribas, U. N., M. Ermis, A. Kutlu, N. Eratli, and M. H. Omurtag. 2020. Forced vibration analysis of composite-geometrically exact elliptical cone helices via mixed FEM. Mechanics of Advanced Materials and Structures doi: 10.1080/15376494.2020.1824048.
  • Boley, B. A., and J. H. Weiner. 1960. Theory of thermal stresses. Wiley.
  • Calim, F. F. 2009. Forced vibration of helical rods of arbitrary shape. Mechanics Research Communication 36 (8):882–91. doi: 10.1016/j.mechrescom.2009.07.007.
  • Calim, F. F. 2012. Forced vibration of curved beams on two-parameter elastic foundation. Applied Mathematical Modelling 36 (3):964–73. doi: 10.1016/j.apm.2011.07.066.
  • Calim, F. F. 2016a. Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Composites Part B: Engineering 98:472–83. doi: 10.1016/j.compositesb.2016.05.040.
  • Calim, F. F. 2016b. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering 103:98–112. doi: 10.1016/j.compositesb.2016.08.008.
  • Calim, F. F. 2016c. Dynamic response of curved Timoshenko beams resting on viscoelastic foundation. Structural Engineering and Mechanics 59 (4):761–74. doi: 10.12989/sem.2016.59.4.761.
  • Calim, F. F. 2020. Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundation. Iranian Journal of Science and Technology, Transactions of Civil Engineering 44 (3):901–20. doi: 10.1007/s40996-019-00283-x.
  • Calim, F. F., and F. G. Akkurt. 2011. Static and free vibration analysis of straight and circular beams on elastic foundation. Mechanics Research Communications 38 (2):89–94. doi: 10.1016/j.mechrescom.2011.01.003.
  • Calim, F. F., and Y. C. Cuma. 2020. Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material. Mechanics Based Design of Structures and Machines doi: 10.1080/15397734.2020.1822181.
  • Chen, G., X. Zeng, X. Liu, and X. Rui. 2020. Transfer matrix method for the free and forced vibration analyses of multi-step Timoshenko beams coupled with rigid bodies on springs. Applied Mathematical Modelling 87:152–70. doi: 10.1016/j.apm.2020.05.023.
  • Cuma, Y. C., and F. F. Calim. 2021. Free vibration analysis of functionally graded cylindrical helices with variable cross-section. Journal of Sound and Vibration 494:115856. doi: 10.1016/j.jsv.2020.115856.
  • Eratli, N., H. Argeso, F. F. Calim, B. Temel, and M. H. Omurtag. 2014. Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM. Journal of Sound and Vibration 333 (16):3671–90. doi: 10.1016/j.jsv.2014.03.017.
  • Eratli, N., M. Yilmaz, K. Darilmaz, and M. H. Omurtag. 2016. Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM. Structural Engineering and Mechanics 57 (2):221–38. doi: 10.12989/sem.2016.57.2.221.
  • Ghayesh, M. H. 2018a. Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. Journal of Computational and Nonlinear Dynamics 13 (4):041002. doi: 10.1115/1.4039191.
  • Ghayesh, M. H. 2018b. Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Applied Mathematical Modelling 59:583–96. doi: 10.1016/j.apm.2018.02.017.
  • Ghayesh, M. H. 2019a. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics - A/Solids 73:492–9. doi: 10.1016/j.euromechsol.2018.09.001.
  • Ghayesh, M. H. 2019b. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Composite Structures 225:110974. doi: 10.1016/j.compstruct.2019.110974.
  • Ghayesh, M. H., H. Farokhi, and A. Gholipour. 2017. Coupled vibrations of functionally graded Timoshenko microbeams. European Journal of Mechanics - A/Solids 65:289–300. doi: 10.1016/j.euromechsol.2017.04.009.
  • Ghayesh, M. H., and N. Moradian. 2011. Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Archive of Applied Mechanics 81 (6):781–99. doi: 10.1007/s00419-010-0446-3.
  • Gholipour, A., and M. H. Ghayesh. 2020. Nonlinear coupled mechanics of functionally graded nanobeams. International Journal of Engineering Science 150:103221. doi: 10.1016/j.ijengsci.2020.103221.
  • Jočković, M., G. Radenković, M. Nefovska-Danilović, and M. Baitsch. 2019. Free vibration analysis of spatial Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. Applied Mathematical Modelling 71:152–72. doi: 10.1016/j.apm.2019.02.002.
  • Kacar, I, and V. Yildirim. 2016. Free vibration/buckling analyses of noncylindrical initially compressed helical composite springs. Mechanics Based Design of Structures and Machines 44 (4):340–53. doi:10.1080/15397734.2015.1066687.
  • Kar, V. R., S. K. Panda, and H. K. Pandey. 2018. Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures. Structural Engineering and Mechanics 68 (5):527–36. doi: 10.12989/sem.2018.68.5.527.
  • Kıral, E., and A. Ertepınar. 1974. Stduies on elastic rods subjected to diverse external agencies-Part III: Vibrational analysis of space rods. METU Journal of Pure Appied Sciences 7 (1):55–69.
  • Kobelev, V. 2020. Delayed presetting of helical springs. Mechanics Based Design of Structures and Machines 48 (1):122–32. doi: 10.1080/15397734.2019.1669457.
  • Lee, B. K., and J. K. Lee. 2021. Large deflection stability of axially functionally graded tapered cantilever column. Mechanics Based Design of Structures and Machines doi: 10.1080/15397734.2021.1906272.
  • Li, L., and Y. Hu. 2016a. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science 107:77–97. doi: 10.1016/j.ijengsci.2016.07.011.
  • Li, L., and Y. Hu. 2016b. State-space method for viscoelastic systems involving general damping model. AIAA Journal 54 (10):3290–5. doi: 10.2514/1.J054180.
  • Li, S., J. Hu, C. Zhai, and L. Xie. 2013. A Unified method for modeling of axially and/or transversally functionally graded beams with variable cross-section profile. Mechanics Based Design of Structures and Machines 41 (2):168–88. doi: 10.1080/15397734.2012.709466.
  • Massoud, M. P. 1965. Vectorial derivation of the equations for small vibrations of twisted curved beams. Journal of Applied Mechanics 32 (2):439–40. doi: 10.1115/1.3625823.
  • Mottershead, J. E. 1980. Finite elements for dynamical analysis of helical rods. International Journal of Mechanical Sciences 22 (5):267–83. doi: 10.1016/0020-7403(80)90028-4.
  • Nagaya, K. 1989. Dynamic stress analysis of a coil spring of arbitrary cross-section to general transient excitations. Journal of Sound and Vibration 128 (2):307–19. doi: 10.1016/0022-460X(89)90774-8.
  • Pearson, D. 1982. The transfer matrix method for the vibration of compressed helical springs. Journal of Mechanical Engineering Science 24 (4):163–71. doi: 10.1243/JMES_JOUR_1982_024_033_02.
  • Praharaj, R. K., and N. Datta. 2020. Dynamic response spectra of fractionally damped viscoelastic beams subjected to moving load. Mechanics Based Design of Structures and Machines doi: 10.1080/15397734.2020.1725563.
  • Ramteke, P. M., K. Mehar, N. Sharma, and S. Panda. 2020a. Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-Law). Scientia Iranica. doi: 10.24200/sci.2020.55581.4290.
  • Ramteke, P. M., B. P. Mahapatra, S. K. Panda, and N. Sharma. 2020b. Static deflection simulation study of 2D functionally graded porous structure. Materials Today: Proceedings 33:5544–47. doi: 10.1016/j.matpr.2020.03.537.
  • Ramteke, P. M., S. K. Panda, and N. Sharma. 2019. Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel and Composite Structures 33 (6):865–75. doi: 10.12989/scs.2019.33.6.865.
  • Ramteke, P. M., B. Patel, and S. K. Panda. 2020. Time-dependent deflection responses of porous FGM structure including pattern and porosity. International Journal of Applied Mechanics 12 (09):2050102. doi: 10.1142/S1758825120501021.
  • Sofiyev, A. H. 2010. Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation. Mechanics Research Communications 37 (6):539–44. doi: 10.1016/j.mechrescom.2010.07.019.
  • Sun, D. L., and X. F. Li. 2019. Initial value method for free vibration of axially loaded functionally graded Timoshenko beams with nonuniform cross section. Mechanics Based Design of Structures and Machines 47 (1):102–20. doi: 10.1080/15397734.2018.1526690.
  • Temel, B., and F. F. Calim. 2003. Forced vibration of cylindrical helical rods subjected to impulsive loads. Journal of Applied Mechanics 70 (2):281–91. doi: 10.1115/1.1554413.
  • Temel, B., F. F. Calim, and N. Tütüncü. 2004. Quasi-static and dynamic response of viscoelastic helical rods. Journal of Sound and Vibration 271 (3-5):921–35. doi: 10.1016/S0022-460X(03)00760-0.
  • Temel, B., F. F. Calim, and N. Tütüncü. 2005. Forced vibration of composite cylindrical helical rods. International Journal of Mechanical Sciences 47 (7):998–1022. doi: 10.1016/j.ijmecsci.2005.04.003.
  • Temel, B., and A. R. Noori. 2019. Transient analysis of laminated composite parabolic arches of uniform thickness. Mechanics Based Design of Structures and Machines 47 (5):546–54. doi: 10.1080/15397734.2019.1572518.
  • Wang, G., L. Zhu, K. Higuchi, W. Fan, and L. Li. 2019. Solution for free vibration of spatial curved beams. Engineering Computations 37 (5):1597–616. doi: 10.1108/EC-03-2019-0097.
  • Wittrick, W. H. 1966. On elastic wave propagation in helical springs. International Journal of Mechanical Sciences 8 (1):25–47. doi: 10.1016/0020-7403(66)90061-0.
  • Xiong, Y., and B. Tabarrok. 1992. A finite element model for the vibration of spatial rods under various applied loads. International Journal of Mechanical Sciences 34 (1):41–51. doi: 10.1016/0020-7403(92)90052-I.
  • Yildirim, V. 1997. A computer program for the free vibration analysis of elastic arcs. Computers & Structures 62 (3):475–85. doi: 10.1016/S0045-7949(96)00229-5.
  • Yildirim, V. 1999. An efficient numerical method for predicting the natural frequencies of cylindrical helical springs. International Journal of Mechanical Sciences 41 (8):919–39. doi: 10.1016/S0020-7403(98)00065-4.
  • Zhang, C., and Q. Wang. 2019. Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme. Mechanics of Advanced Materials and Structures 26 (21):1821–31. doi: 10.1080/15376494.2018.1452318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.