244
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study of behavior of textile-reinforced composite tubes under lateral compression

ORCID Icon
Pages 3738-3758 | Received 16 Feb 2021, Accepted 28 May 2021, Published online: 15 Jun 2021

References

  • Abosbaia, A. S., E. Mahdi, A. M. S. Hamouda, B. B. Sahari, and A. S. Mokhtar. 2005. Energy absorption capability of laterally loaded segmented composite tubes. Composite Structures 70 (3):356–73. doi:10.1016/j.compstruct.2004.08.039.
  • Avalle, M., and L. Goglio. 1997. Static lateral compression of aluminium tubes: Strain gauge measurements and discussion of theoretical models. The Journal of Strain Analysis for Engineering Design 32 (5):335–43. doi:10.1243/0309324971513454.
  • Baroutaji, A., A. Arjunan, M. Stanford, J. Robinson, and A. G. Olabi. 2021. Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing. Engineering Structures 226:111324. doi:10.1016/j.engstruct.2020.111324.
  • Bensadoun, F., I. Verpoest, J. Baets, J. Müssig, N. Graupner, P. Davies, M. Gomina, A. Kervoelen, and C. Baley. 2017. Impregnated fibre bundle test for natural fibres used in composites. Journal of Reinforced Plastics and Composites 36 (13):942–57. doi:10.1177/0731684417695461.
  • Burton, R. H., and J. M. Craig. 1963. An investigation into the energy absorbing properties of metal tubes loaded in the transverse direction. BSc (Engineering) Report.
  • Chater, E., and K. W. Neale. 1983. Large strain inelastic behaviour of cylindrical tubes. International Journal of Solids and Structures 19 (8):709–24. doi:10.1016/0020-7683(83)90066-5.
  • Cuypers, H., J. Van Ackeren, B. Belkassem, and J. Wastiels. 2008. Impact resistance of load bearing sandwich elements with textile reinforced concrete faces. In ECCM 13, 13th European conference on composite materials.
  • Daskiran, E. G., M. M. Daskiran, and M. Gencoglu. 2016. Development of fine grained concretes for textile reinforced cementitious composites. Computers and Concrete 18 (2):279–95. doi:10.12989/cac.2016.18.2.279.
  • Daskiran, E. G. 2018. Development of high performance cementitious laminated composites in terms of high strength and high durability (in Turkish). Ph.D. diss., Istanbul Technical University, Turkey.
  • DeRuntz, J. A., and P. G. Hodge. 1963. Crushing of a tube between rigid plates. Journal of Applied Mechanics 30 (3):391–5. doi:10.1115/1.3636567.
  • Dönmez, D., A. A. Dönmez, and M. Gençoğlu. 2020. Mechanical response of textile reinforced cementitious composite tubes under monotonic and cyclic loadings. Construction and Building Materials 251:118963. doi:10.1016/j.conbuildmat.2020.118963.
  • Donmez, D., M. Gencoglu, and A. A. Donmez. 2019. Experimental assessment of TRC cylindrical tube-shaped units. The Tenth International Structural Engineering and Construction Conference, ISEC (6). doi:10.14455/ISEC.res.2019.74.
  • El-Sobky, H., and A. A. Singace. 1999. Profiled polymer pipes as re-usable energy absorption elements. International Journal of Mechanical Sciences 41 (11):1385–400. doi:10.1016/S0020-7403(98)00087-3.
  • Fidelis, M. E. A., R. D. Toledo Filho, F. de Andrade Silva, V. Mechtcherine, M. Butler, and S. Hempel. 2016. The effect of accelerated aging on the interface of jute textile reinforced concrete. Cement and Concrete Composites 74:7–15. doi:10.1016/j.cemconcomp.2016.09.002.
  • Firouzsalari, S. E., D. Dizhur, K. Jayaraman, N. Chouw, and J. M. Ingham. 2020. Flax fabric-reinforced epoxy pipes subjected to lateral compression. Composite Structures 244:112307. doi:10.1016/j.compstruct.2020.112307.
  • Gao, Y., Y. Guan, K. Li, M. Liu, C. Zhang, and J. Song. 2019. Failure behaviors of C/C composite tube under lateral compression loading. Nuclear Engineering and Technology 51 (7):1822–7. doi:10.1016/j.net.2019.05.024.
  • Gupta, N. K., G. S. Sekhon, and P. K. Gupta. 2005. Study of lateral compression of round metallic tubes. Thin-Walled Structures 43 (6):895–922. doi:10.1016/j.tws.2004.12.002.
  • Han, L. H., Z. Tao, and W. D. Wang. 2009. Advanced composite and mixed structures-testing, theory and design approach. China: China Science Press.
  • Ipek, C. 2015. The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers. Structural Engineering and Mechanics 55 (2):335–48. doi:10.12989/sem.2015.55.2.000.
  • Ismail, M., B. Muhammad, J. M. Yatim, A. H. Noruzman, and Y. W. Soon. 2011. Behavior of concrete with polymer additive at fresh and hardened states. Procedia Engineering 14:2230–7. doi:10.1016/j.proeng.2011.07.281.
  • Karamanos, S. A., and C. Eleftheriadis. 2004. Collapse of pressurized elastoplastic tubular members under lateral loads. International Journal of Mechanical Sciences 46 (1):35–56. doi:10.1016/j.ijmecsci.2004.02.015.
  • Kim, H. J., M. S. Won, T. W. Park, M. J. Choi, and J. C. Jamin. 2015. Derivation of design charts based on the two-dimensional structural analysis of geotextile tubes. Structural Engineering and Mechanics 55 (2):349–64. doi:10.1016/j.proeng.2011.07.281.
  • Kobayashi, S., and M. Kawahara. 2012. Effects of stacking thickness on the damage behavior in CFRP composite cylinders subjected to out-of-plane loading. Composites Part A: Applied Science and Manufacturing 43 (1):231–7. doi:10.1016/j.compositesa.2011.10.004.
  • Kocal, T., and S. D. Akbarov. 2019. The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder. Structural Engineering and Mechanics 71 (5):577–601. doi:10.12989/sem.2019.71.5.577.
  • Li, S., X. Guo, Q. Li, D. Ruan, and G. Sun. 2020. On lateral compression of circular aluminum, CFRP and GFRP tubes. Composite Structures 232:111534. doi:10.1016/j.compstruct.2019.111534.
  • Mehditabar, A., and G. H. Rahimi. 2020. Cyclic elastoplastic responses of thick-walled FG pipe behaves as a power law function considering damage evolution. Mechanics Based Design of Structures and Machines :1–19. doi:10.1080/15397734.2020.1768112.
  • Mobasher, B. 2011. Mechanics of fiber and textile reinforced cement composites. Boca Raton, FL: CRC press. doi:10.1201/b11181.
  • Morris, E., A. G. Olabi, M. S. J. Hashmi, and M. D. Gilchrist. 2007. Experimental and numerical analysis of circular tube systems under quasi-static and dynamic loading. In Experimental analysis of nano and engineering materials and structures. Proceedings of the 13th International Conference on Experimental Mechanics, ed. E. E. Gdoutos, 801–2. doi:10.1007/978-1-4020-6239-1_398.
  • Niknejad, A., S. A. Elahi, and G. H. Liaghat. 2012. Experimental investigation on the lateral compression in the foam-filled circular tubes. Materials & Design (1980-2015) 36:24–34. doi:10.1016/j.matdes.2011.10.047.
  • Pakravan, H. R., M. Jamshidi, and H. Rezaei. 2016. Effect of textile surface treatment on the flexural properties of textile-reinforced cementitious composites. Journal of Industrial Textiles 46 (1):116–29. doi:10.1177/1528083715576320.
  • Product Dassault Systèmes Simulia Corp, ABAQUS. 2014. V. 6.14 Analysis user’s manual online documentation, Providence, RI.
  • Rahmaninezhad, S. M., J. Han, M. Al-Naddaf, and R. L. Parsons. 2019. Behavior of Sliplined Corrugated Steel Pipes under Parallel-Plate Loading. Journal of Materials in Civil Engineering 31 (10):04019242. doi:10.1061/(ASCE)MT.1943-5533.0002889.
  • Reddy, T. Y., and S. R. Reid. 1980. Phenomena associated with the crushing of metal tubes between rigid plates. International Journal of Solids and Structures 16 (6):545–62. doi:10.1016/0020-7683(80)90005-0.
  • Sueki, S.,. C. Soranakom, B. Mobasher, and A. Peled. 2007. Pullout-slip response of fabrics embedded in a cement paste matrix. Journal of Materials in Civil Engineering 19 (9):718–27. doi:10.1061/(ASCE)0899-1561(2007)19:9(718).
  • Sulu, I. Y., and S. Temiz. 2020. Mechanical characterization of composite pipe systems joined using different radii pipes subject to internal pressure. Mechanics Based Design of Structures and Machines :1–17. doi:10.1080/15397734.2020.1848590.
  • Tang, Y. Q., Z. H. Zhou, and S. L. Chan. 2013. An accurate curved beam element based on trigonometrical mixed polynomial function. International Journal of Structural Stability and Dynamics 13 (04):1250084. doi:10.1142/S0219455412500848.
  • Tuǧcu, P. 1996. Inertial effects in ductile failure of cylindrical tubes under internal pressure. International Journal of Impact Engineering 18 (5):539–63. doi:10.1016/0734-743X(95)00056-G.
  • Wahalathantri, B. L., D. P. Thambiratnam, T. H. T. Chan, and S. Fawzia. 2011. A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. In Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, 260–4. Queensland University of Technology.
  • Zhu, G., X. Zhao, P. Shi, and Q. Yu. 2019. Crashworthiness analysis and design of metal/CFRP hybrid structures under lateral loading. IEEE Access. 7:64558–70. doi:10.1109/ACCESS.2019.2917284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.