275
Views
7
CrossRef citations to date
0
Altmetric
Articles

An experimental study on a self-centering damper based on shape-memory alloy wires

, , ORCID Icon & ORCID Icon
Pages 3779-3802 | Received 31 Mar 2021, Accepted 01 Jun 2021, Published online: 21 Jun 2021

References

  • Abid, F., Hami, A. E., Merzouki, T., Walha, L., and Haddar, M. 2021. An approach for the reliability-based design optimization of shape memory alloy structure. Mechanics Based Design of Structures and Machines 2, 49:155–71. doi:10.1080/15397734.2019.1665541.
  • AISC360. 2010. Specification for structural steel buildings. AISC 360-10. Chicago, IL: American Institute of Steel Construction.
  • Alam, M. S., Youssef, M. A., and Nehdi, M. 2007. Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: review. Canadian Journal of Civil Engineering 34(9):1075–86. doi:10.1139/l07-038.
  • Alipour, A., Kadkhodaei, M., and Safaei, M. 2017. Design, analysis, and manufacture of a tension–compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires. Journal of intelligent material systems and structures 28(15):2129–39. doi:10.1177/1045389X16682839.
  • ASCE07. 2016. Minimum design loads and associated criteria for buildings and other structures. Reston, VA: American Society of Civil Engineers.
  • Asgarian, B., Salari, N., and Saadati, B. 2016. Application of intelligent passive devices based on shape memory alloys in seismic control of structures. Structures 5:161–169. doi:10.1016/j.istruc.2015.10.013.
  • ATC-24. 1992. Guidelines for cyclic seismic testing of component of steel structures. Redwood City, CA: Applied Technology Council.
  • Beheshti, M., and Asadi, P. 2020. Optimal seismic retrofit of fractional viscoelastic dampers for minimum life-cycle cost of retrofitted steel frames. Structural and Multidisciplinary Optimization 61(5):2021–35. doi:10.1007/s00158-019-02454-w.
  • Casciati, S., Faravelli, L., and Vece, M. 2017. Investigation on the fatigue performance of Ni‐Ti thin wires. Structural Control and Health Monitoring 24(1):e1855. doi:10.1002/stc.1855.
  • Casciati, S., Faravelli, L., and Vece, M. 2018. Long-time storage effects on shape memory alloy wires. Acta Mechanica 229:697–705. doi:10.1007/s00707-017-1993-2.
  • Casciati, S., Torra, V., and Vece, M. 2018. Local effects induced by dynamic load self‐heating in NiTi wires of shape memory alloys. Structural Control and Health Monitoring 25(4):e2134. doi:10.1002/stc.2134.
  • Chang, W.-S., and Araki Y. 2016. Use of shape memory alloy in construction: A critical review. Proceedings of the ICE – Civil Engineering 169:87–89. doi:10.1680/jcien.15.00010.
  • Clark, P., Frank, K., Krawinkler, H., and Shaw, R. 1997. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. SAC Steel Project Background Document. October, Report No. SAC/BD-97/02.
  • Czechowicz, A., and Langbein, S. 2015. Shape memory alloy valves: Basics, potentials, design. Switzerland: Springer.
  • Dayananda, G., and Rao, M. S. 2008. Effect of strain rate on properties of superelastic NiTi thin wires. Materials Science and Engineering: A 486(1–2):96–103. doi:10.1016/j.msea.2007.09.006.
  • DesRoches, R., McCormick, J., and Delemont, M. 2004. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering 130(1):38–46. doi:10.1061/(ASCE)0733-9445(2004)130:1(38).
  • Dolce, M., and Cardone, D. 2001a. Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International Journal of Mechanical Sciences 43(11):2631–56. doi:10.1016/S0020-7403(01)00049-2.
  • Dolce, M., and Cardone, D. 2001b. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International Journal of Mechanical Sciences 43(11):2657–77. doi:10.1016/S0020-7403(01)00050-9.
  • Fang, C., Ping, Y., & Chen, Y. 2020. Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames. Earthquake Engineering & Structural Dynamics 49(2):155–74. doi:10.1002/eqe.3231.
  • Fang, C., Wang, W., & Feng, W. 2019. Experimental and numerical studies on self-centring beam-to-column connections free from frame expansion. Engineering Structures 198:109526. doi:10.1016/j.engstruct.2019.109526.
  • Fang, C., Wang, W., Zhang, A., Sause, R., Ricles, J., and Chen, Y. 2019a. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs. Journal of Structural Engineering 145(10):04019109. doi:10.1061/(ASCE)ST.1943-541X.0002414.
  • Fang, C., Zheng, Y., Chen, J., Yam, M. C., and Wang, W. 2019b. Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application. Engineering Structures 183:533–49. doi:10.1016/j.engstruct.2019.01.049.
  • FEMA 440. 2005. Improvement of nonlinear static seismic analysis procedures. FEMA Region II. Redwood City, CA: Applied Technology Council.
  • FEMA P-58. 2012. Seismic performance assessment of buildings volume 1 – Methodology. Tech. Rep. FEMA-P58. Washington, DC: Federal Emergency Management Agency.
  • Gao, N., Jeon, J.-S., Hodgson, D. E., and DesRoches, R. 2016. An innovative seismic bracing system based on a superelastic shape memory alloy ring. Smart materials and structures 25(5):055030. doi:10.1088/0964-1726/25/5/055030.
  • Han, Y. L., Li, Q., Li, A. Q., Leung, A., and Lin, P. H. 2003. Structural vibration control by shape memory alloy damper, Earthquake Engineering & Structural Dynamics 32(3):483–94. doi:10.1002/eqe.243.
  • Haque, A. B. M. R., Issa, A., and Shahria Alam, M. 2019. Superelastic shape memory alloy flag-shaped hysteresis model with sliding response from residual deformation: Experimental and numerical study. Journal of Intelligent Material Systems and Structures 30(12):1823–49. doi:10.1177/1045389X19844328.
  • Issa, A., and Alam, M. S. 2020. Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames. Smart Materials and Structures 29(5):055029. doi:10.1088/1361-665X/ab7858.
  • Jennings, P. C. 1968. Equivalent viscous damping for yielding structures. Journal of the Engineering Mechanics Division 94(1):103–16. doi:10.1061/JMCEA3.0000929.
  • Kamarian, S., Bodaghi, M., Isfahani, R. B., and Song, J. I. 2020. A comparison between the effects of shape memory alloys and carbon nanotubes on the thermal buckling of laminated composite beams. Mechanics Based Design of Structures and Machines 1–24. doi:10.1080/15397734.2020.1776131.
  • Li, H.-N., Liu, M.-M., and Fu, X. 2018. An innovative re-centering SMA-lead damper and its application to steel frame structures, Smart Materials and Structures 27(7):075029. doi:10.1088/1361-665X/aac28f.
  • Lim, T. J., and McDowell, D. L. 1995. Path dependence of shape memory alloys during cyclic loading. Journal of Intelligent Material Systems and Structures 6(6):817–30. doi:10.1177/1045389X9500600610.
  • Ma, H., and Cho, C. 2008. Feasibility study on a superelastic SMA damper with re-centring capability. Materials Science and Engineering: A 473(1–2):290–6. doi:10.1016/j.msea.2007.04.073.
  • Masuda, A., and Noori, M. 2002. Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys. International Journal of Non-Linear Mechanics 37(8):1375–86. doi:10.1016/S0020-7462(02)00024-0.
  • McKenna, F. 2011. OpenSees: A framework for earthquake engineering simulation. Computing in Science & Engineering 13(4):58–66. doi:10.1109/MCSE.2011.66.
  • Moradi, S., Alam, M. S., and Asgarian, B. 2014. Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. The Structural Design of Tall and Special Buildings 23 (18):1406–25. doi:10.1002/tal.1149.
  • Morais, J., de Morais, P. G., Santos, C., Costa, A. C., and Candeias, P. 2017. Shape memory alloy based dampers for earthquake response mitigation. Procedia Structural Integrity 5:705–12. doi:10.1016/j.prostr.2017.07.048.
  • Ozbulut O. E., and Hurlebaus S. 2011. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes. Mechanical Systems and Signal Processing 25:2849–62. doi:10.1016/j.ymssp.2011.04.017.
  • Ozbulut, O., Roschke, P., Lin, P., and Loh, C. 2010. GA-based optimum design of a shape memory alloy device for seismic response mitigation, Smart Materials and Structures 19(6):065004. doi:10.1088/0964-1726/19/6/065004.
  • Ozbulut, O. E., Silwal, B. and Michael, R. 2015. Design and component testing of an SMA-based seismic control device. In Structures Congress 2015, 1237–52. Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784479117.106.
  • Pan, Q., and Cho, C. 2007. The investigation of a shape memory alloy micro-damper for MEMS applications. Sensors (Basel) 7(9):1887–900. doi:10.3390/s7091887.
  • Parulekar, Y., Reddy, G., Vaze, K., Guha, S., Gupta, C., Muthumani, K., and Sreekala, R. 2012. Seismic response attenuation of structures using shape memory alloy dampers. Structural control and health monitoring 19(1):102–19. doi:10.1002/stc.428.
  • Pieczyska, E., Gadaj, S., Nowacki, W. K., Hoshio, K., Makino, Y., and Tobushi, H. 2005. Characteristics of energy storage and dissipation in TiNi shape memory alloy. Science and Technology of Advanced Materials 6(8):889–94. doi:10.1016/j.stam.2005.07.008.
  • Qiu, C., Qi, J., and Chen, C. 2020. Energy-based seismic design methodology of SMABFs using hysteretic energy spectrum. Journal of Structural Engineering 146(2):04019207.
  • Qiu, C. X., and Zhu, S. 2016. High-mode effects on seismic performance of multi-story self-centering braced steel frames. Journal of Constructional Steel Research 119:133–43. doi:10.1016/j.jcsr.2015.12.008.
  • Qiu, C. X., and Zhu, S. 2017b. Performance-based seismic design of self-centering steel frames with SMA-based braces. Engineering Structures 130:67–82. doi:10.1016/j.engstruct.2016.09.051.
  • Qiu, C., and Zhu, S. 2017a. Shake table test and numerical study of self‐centering steel frame with SMA braces. Earthquake Engineering & Structural Dynamics 46(1):117–37. doi:10.1002/eqe.2777.
  • Raniecki, B., Lexcellent, C., and Tanaka, K. 1992. Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Archive of Mechanics, Archiwum Mechaniki Stosowanej, 44:261–84.
  • Salichs, J., Hou, Z., and Noori, M. 2001. Vibration suppression of structures using passive shape memory alloy energy dissipation devices, Journal of Intelligent Material Systems and Structures 12(10):671–80. doi:10.1177/104538901320560319.
  • Shayanfard, P., Kadkhodaei, M., and Jalalpour, A. 2019. Numerical and experimental investigation on electro-thermo-mechanical behavior of NiTi shape memory alloy wires. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43(1):621–29. doi:10.1007/s40997-018-0183-8.
  • Smith, R. C. 2005. Smart material systems: Model development, SIAM. doi:10.1137/1.9780898717471.
  • Song, G., Ma, N., and Li, H.-N. 2006. Applications of shape memory alloys in civil structures. Engineering Structures 28(9):1266–74. doi:10.1016/j.engstruct.2005.12.010.
  • Soong T., and Spencer Jr., B. 2002. Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures 24(3):243–59. doi:10.1016/S0141-0296(01)00092-X.
  • Soul, H., Isalgue, A., Yawny, A., Torra, V., and Lovey, F. 2010. Pseudoelastic fatigue of NiTi wires: Frequency and size effects on damping capacity, Smart Materials and Structures 19(8):085006. doi:10.1088/0964-1726/19/8/085006.
  • Tang, W., and Lui, E. M. 2014. Hybrid recentering energy dissipative device for seismic protection. Journal of Structures. doi:10.1155/2014/262409.
  • Torra, V., Carreras, G., Casciati, S., and Terriault, P. 2014. On the NiTi wires in dampers for stayed cables. Smart Structures and Systems 13(3):353–74. doi:10.12989/sss.2014.13.3.353.
  • Wang, W., Fang, C., Feng, W., Ricles, J., Sause, R., and Chen, Y. 2020. SMA-based low-damage solution for self-centering steel and composite beam-to-column connections. Journal of Structural Engineering 146(6):04020092. doi:10.1061/(ASCE)ST.1943-541X.0002649.
  • Wang, W., Fang, C., Zhang, A., and Liu, X. 2019. Manufacturing and performance of a novel self‐centring damper with shape memory alloy ring springs for seismic resilience. Structural Control and Health Monitoring 26(5):e2337. doi:10.1002/stc.2337.
  • Zareie, S., Alam, M. S., Seethaler, R. J., and Zabihollah, A. 2020a. Stability control of a novel frame integrated with an SMA-MRF control system for marine structural applications based on the frequency analysis. Applied Ocean Research 97:102091. doi:10.1016/j.apor.2020.102091.
  • Zareie, S., Issa, A. S., Seethaler, R. J., and Zabihollah, A. 2020b. Recent advances in the applications of shape memory alloys in civil infrastructures: A review. Structures 27:1535–50. doi:10.1016/j.istruc.2020.05.058.
  • Zareie, S., and Zabihollah, A. 2020. A study of pre-straining shape memory alloy (SMA)-based control elements subject to large-amplitude cyclic loads. Ships and Offshore Structures 16:306–13. doi:10.1080/17445302.2020.1726647.
  • Zhou, P., Liu, M., Li, H., and Song, G. 2018. Experimental investigations on seismic control of cable‐stayed bridges using shape memory alloy self‐centering dampers. Structural control and health monitoring 25(7):e2180. doi:10.1002/stc.2180.
  • Zhu, S., and Zhang, Y. 2008. Performance based seismic design of steel braced frame system with self-centering friction damping brace. In Proceedings of the Structures Congress 2008: 18th Analysis and Computation Specialty Conference, 1–13. Vancouver, Canada. doi:10.1061/41000(315)32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.