289
Views
5
CrossRef citations to date
0
Altmetric
Articles

Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method

, ORCID Icon &
Pages 3803-3822 | Received 08 Oct 2020, Accepted 11 Jun 2021, Published online: 05 Jul 2021

References

  • Akbaş, Ş. D. 2016. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium. Smart Structures and Systems 18:1125–43.
  • Apuzzo, A., R. Barretta, S. Faghidian, R. Luciano, and F. M. de Sciarra. 2018. Free vibrations of elastic beams by modified nonlocal strain gradient theory. International Journal of Engineering Science 133:99–108. doi:10.1016/j.ijengsci.2018.09.002.
  • Asgharifard Sharabiani, P., and M. R. Haeri Yazdi. 2013. Nonlinear free vibrations of functionally graded nanobeams with surface effects. Composites Part B: Engineering 45 (1):581–6. doi:10.1016/j.compositesb.2012.04.064.
  • Bağdatlı, S. M. 2015. Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory. Composites Part B: Engineering 80:43–52. doi:10.1016/j.compositesb.2015.05.030.
  • Barretta, R., L. Feo, and R. Luciano. 2015. Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Composites Part B: Engineering 72:217–22. doi:10.1016/j.compositesb.2014.12.018.
  • Barretta, R., L. Feo, R. Luciano, and F. Marotti de Sciarra. 2016. An Eringen-like model for Timoshenko nanobeams. Composite Structures 139:104–10. doi:10.1016/j.compstruct.2015.11.048.
  • Bastanfar, M., S. A. Hosseini, R. Sourki, and F. Khosravi. 2019. Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response. Archive of Mechanical Engineering 66:417.
  • Ebrahimi, F., and E. Salari. 2015a. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Composite Structures 128:363–80. doi:10.1016/j.compstruct.2015.03.023.
  • Ebrahimi, F., and E. Salari. 2015b. Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Composites Part B: Engineering 78:272–90. doi:10.1016/j.compositesb.2015.03.068.
  • Ebrahimi, F., and E. Salari. 2017. Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions. Smart Structures and Systems 19 (3):243–57. doi:10.12989/sss.2017.19.3.243.
  • Ebrahimi, F., and G. R. Shaghaghi. 2016. Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions. Smart Structures and Systems 18 (6):1087–109. doi:10.12989/sss.2016.18.6.1087.
  • Ebrahimi, F., and N. Shafiei. 2016. Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams. Smart Structures and Systems 17 (5):837–57. doi:10.12989/sss.2016.17.5.837.
  • Eghbalia, M., S. A. Hoseini, and O. Rahmani. 2021. Free vibration of axially functionally graded nanobeam with an attached mass based on nonlocal strain gradient theory via new ADM numerical method. Amirkabir Journal of Mechanical Engineering 53 (2):1–8. doi:10.22060/mej.2020.17013.6495.
  • Eltaher, M., S. A. Emam, and F. Mahmoud. 2012. Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation 218 (14):7406–20. doi:10.1016/j.amc.2011.12.090.
  • Eltaher, M., S. A. Emam, and F. Mahmoud. 2013. Static and stability analysis of nonlocal functionally graded nanobeams. Composite Structures 96:82–8. doi:10.1016/j.compstruct.2012.09.030.
  • Eringen, A. 1976. Nonlocal polar field models. New York, NY: Academic.
  • Eringen, A. C., and D. Edelen. 1972. On nonlocal elasticity. International Journal of Engineering Science 10 (3):233–48. doi:10.1016/0020-7225(72)90039-0.
  • Eringen, A. C., and D. G. B. Edelen. 1972. On nonlocal elasticity. International Journal of Engineering Science 10 (3):233–48. doi:10.1016/0020-7225(72)90039-0.
  • Gao, Y., W.-S. Xiao, and H. Zhu. 2019. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method. Structural Engineering and Mechanics 69:205–19.
  • Hamidi, B. A., S. A. Hosseini, and H. Hayati. 2020. Forced torsional vibration of nanobeam via nonlocal strain gradient theory and surface energy effects under moving harmonic torque. Waves in Random and Complex Media. doi:10.1080/17455030.2020.1772523.
  • Hamidi, B. A., S. A. Hosseini, H. Hayati, and R. Hassannejad. 2020a. Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1744003.
  • Hamidi, B. A., S. A. Hosseini, R. Hassannejad, and F. Khosravi. 2019. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses 43 (2):157–74. doi:10.1080/01495739.2019.1666694.
  • Hamidi, B. A., S. A. Hosseini, R. Hassannejad, and F. Khosravi. 2020b. Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. The European Physical Journal Plus 135 (1):35. doi:10.1140/epjp/s13360-019-00037-8.
  • Hashemian, M., S. Foroutan, and D. Toghraie. 2019. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mechanics of Materials 139:103209. doi:10.1016/j.mechmat.2019.103209.
  • Hosseini, S. A., and F. Khosravi. 2020. Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings. Advances in Nano Research 8:25–36.
  • Hosseini, S. A., F. Khosravi, and M. Ghadiri. 2020a. Effect of external moving torque on dynamic stability of carbon nanotube. Journal of Nano Research 61:118–35. doi:10.4028/www.scientific.net/JNanoR.61.118.
  • Hosseini, S. A., F. Khosravi, and M. Ghadiri. 2020b. Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen’s theory. Journal of Vibration and Control 26 (11–12):913–5. doi:10.1177/1077546319890170.
  • Hosseini-Hashemi, S., and R. Nazemnezhad. 2013. An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Composites Part B: Engineering 52:199–206. doi:10.1016/j.compositesb.2013.04.023.
  • Karami, B., D. Shahsavari, and L. Li. 2018. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures 97:317–27. doi:10.1016/j.physe.2017.11.020.
  • Khosravi, F., S. A. Hosseini, and A. Tounsi. 2020. Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen’s nonlocal differential model. The European Physical Journal Plus 135 (2):183. doi:10.1140/epjp/s13360-020-00207-z.
  • Khosravi, F., S. A. Hosseini, and B. A. Hamidi. 2020a. On torsional vibrations of triangular nanowire. Thin-Walled Structures 148:106591. doi:10.1016/j.tws.2019.106591.
  • Khosravi, F., S. A. Hosseini, and B. A. Hamidi. 2020b. Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: Comparison with hollow elliptical cross section. The European Physical Journal Plus 135 (3):1–20. doi:10.1140/epjp/s13360-020-00312-z.
  • Khosravi, F., S. A. Hosseini, and H. Norouzi. 2020. Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (10):1928–42. doi:10.1177/0954406220903341.
  • Kiani, K. 2010. Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-Dimensional Systems and Nanostructures 42 (9):2391–401. doi:10.1016/j.physe.2010.05.021.
  • Kiani, K. 2011. Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. Journal of Sound and Vibration 330 (20):4896–914. doi:10.1016/j.jsv.2011.03.033.
  • Kiani, K. 2014. Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Composite Structures 107:610–9. doi:10.1016/j.compstruct.2013.07.035.
  • Lam, D., F. Yang, A. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Lei, X.-W., T. Natsuki, J.-X. Shi, and Q.-Q. Ni. 2012. Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Composites Part B: Engineering 43 (1):64–9. doi:10.1016/j.compositesb.2011.04.032.
  • Lu, L., L. Zhu, X. Guo, J. Zhao, and G. Liu. 2019. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics 40 (12):1695–722. doi:10.1007/s10483-019-2549-7.
  • Li, L., R. Lin, and T. Y. Ng. 2020. Contribution of nonlocality to surface elasticity. International Journal of Engineering Science 152:103311. doi:10.1016/j.ijengsci.2020.103311.
  • Li, L., Y. Hu, and L. Ling. 2015. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Composite Structures 133:1079–92. doi:10.1016/j.compstruct.2015.08.014.
  • Li, L., Y. Hu, and X. Li. 2016. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences 115:135–44.
  • Malekzadeh, P., and M. Shojaee. 2013. Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Composites Part B: Engineering 52:84–92. doi:10.1016/j.compositesb.2013.03.046.
  • Mindlin, R., and N. Eshel. 1968. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures 4 (1):109–24. doi:10.1016/0020-7683(68)90036-X.
  • Mohammadimehr, M., and S. Alimirzaei. 2017. Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM. Smart Structures and Systems 19 (3):309–22. doi:10.12989/sss.2017.19.3.309.
  • Pirmohammadi, A. A., M. Pourseifi, O. Rahmani, and S. A. H. Hoseini. 2014. Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Applied Physics A 117 (3):1547–55. doi:10.1007/s00339-014-8592-z.
  • Pourseifi, M., O. Rahmani, and S. A. H. Hoseini. 2015. Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50 (5):1351–69. doi:10.1007/s11012-014-0096-6.
  • Rahmani, O., and O. Pedram. 2014. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Science 77:55–70. doi:10.1016/j.ijengsci.2013.12.003.
  • Sahmani, S., and M. Aghdam. 2017. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Composite Structures 179:77–88. doi:10.1016/j.compstruct.2017.07.064.
  • She, G.-L., F.-G. Yuan, Y. R. Ren, H.-B. Liu, and W.-S. Xiao. 2018. Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Composite Structures 203:614–23. doi:10.1016/j.compstruct.2018.07.063.
  • Shen, H.-S. 2012. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Composites Part B: Engineering 43 (3):1030–8. doi:10.1016/j.compositesb.2011.10.004.
  • Şimşek, M. 2010. Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures 43 (1):182–91. doi:10.1016/j.physe.2010.07.003.
  • Şimşek, M. 2011. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Computational Materials Science 50 (7):2112–23. doi:10.1016/j.commatsci.2011.02.017.
  • Şimşek, M. 2014. Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Composites Part B: Engineering 56:621–8. doi:10.1016/j.compositesb.2013.08.082.
  • Uymaz, B. 2013. Forced vibration analysis of functionally graded beams using nonlocal elasticity. Composite Structures 105:227–39. doi:10.1016/j.compstruct.2013.05.006.
  • Wang, B. L., and K. F. Wang. 2013. Vibration analysis of embedded nanotubes using nonlocal continuum theory. Composites Part B: Engineering 47:96–101. doi:10.1016/j.compositesb.2012.10.043.
  • Xu, X.-J., X.-C. Wang, M.-L. Zheng, and Z. Ma. 2017. Bending and buckling of nonlocal strain gradient elastic beams. Composite Structures 160:366–77. doi:10.1016/j.compstruct.2016.10.038.
  • Zhu, J., J. Yang, and S. Kitipornchai. 2013. Dispersion spectrum in a functionally graded carbon nanotube-reinforced plate based on first-order shear deformation plate theory. Composites Part B: Engineering 53:274–83. doi:10.1016/j.compositesb.2013.04.016.
  • Zhu, X., and L. Li. 2019. A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect. Applied Mathematics and Mechanics 40 (11):1561–88. doi:10.1007/s10483-019-2541-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.