165
Views
12
CrossRef citations to date
0
Altmetric
Articles

Optimization of CNT/polymer/fiber laminated truncated conical panels for maximum fundamental frequency and minimum cost

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3922-3944 | Received 24 Apr 2021, Accepted 16 Jun 2021, Published online: 19 Jul 2021

References

  • Afshari, H. 2020a. Effect of graphene nanoplatelet reinforcements on the dynamics of rotating truncated conical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (10):42. doi:10.1007/s40430-020-02599-6.
  • Afshari, H. 2020b. Free vibration analysis of GNP-reinforced truncated conical shells with different boundary conditions. Australian Journal of Mechanical Engineering. doi:10.1080/14484846.2020.1797340.
  • Afshari, H., and N. Adab. 2020. Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1713158.
  • Afshari, H., and H. Amirabadi. 2021. Vibration characteristics of rotating truncated conical shells reinforced with agglomerated carbon nanotubes. Journal of Vibration and Control. doi:10.1177/10775463211000499.
  • Akgöz, B., and Ö. Civalek. 2015. A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences 99:10–20. doi:10.1016/j.ijmecsci.2015.05.003.
  • Bert, C. W., and M. Malik. 1996. Differential quadrature method in computational mechanics: A review. Applied Mechanics Reviews 49 (1):1–28. doi:10.1115/1.3101882.
  • Chakraborty, S., T. Dey, and R. Kumar. 2019. Stability and vibration analysis of CNT-reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Composites Part B: Engineering 168:1–14. doi:10.1016/j.compositesb.2018.12.051.
  • Chamis, C. C. 1983. Simplified composite micromechanics equations for hygral, thermal and mechanical properties.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2020. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1766494.
  • Dabbagh, A., A. Rastgoo, and F. Ebrahimi. 2021. Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mechanics Based Design of Structures and Machines 49 (3):403–29. doi:10.1080/15397734.2019.1692666.
  • Dastjerdi, S., B. Akgöz, and Ö. Civalek. 2020. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236.
  • Ebrahimi, F., A. Dabbagh, and A. Rastgoo. 2020. Static stability analysis of multi-scale hybrid agglomerated nanocomposite shells. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1848585.
  • Ebrahimi, F., A. Dabbagh, and A. Rastgoo. 2021. Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mechanics Based Design of Structures and Machines 49 (4):487–510. doi:10.1080/15397734.2019.1692665.
  • Esawi, A. M., and M. M. Farag. 2007. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design 28 (9):2394–401. doi:10.1016/j.matdes.2006.09.022.
  • Eshelby, J. D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 241 (1226):376–96.
  • Gholami, R., R. Ansari, and Y. Gholami. 2018. Numerical study on the nonlinear resonant dynamics of carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with various boundary conditions. Aerospace Science and Technology 78:118–29. doi:10.1016/j.ast.2018.03.043.
  • Ghorbanpour Arani, A., F. Kiani, and H. Afshari. 2019a. Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow. International Journal of Applied Mechanics 11 (6):1950052. doi:10.1142/S1758825119500522.
  • Ghorbanpour Arani, A., F. Kiani, and H. Afshari. 2019b. Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. Journal of Sandwich Structures & Materials 23 (1):255–78. doi:10.1177/1099636219830787.
  • Golchi, M., M. Talebitooti, and R. Talebitooti. 2019. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method. Mechanics Based Design of Structures and Machines 47 (3):255–82. doi:10.1080/15397734.2018.1545588.
  • Hahn, H. T. 1980. Simplified formulas for elastic moduli of unidirectional continuous fiber composites. Journal of Composites Technology and Research 2 (3):5–7. doi:10.1520/CTR10702J.
  • Hasan, Z., A. Chattopadhyay, and Y. Liu. 2015. Multiscale approach to analysis of composite joints incorporating nanocomposites. Journal of Aircraft 52 (1):204–15. doi:10.2514/1.C032652.
  • Hill, R. 1964. Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. Journal of the Mechanics and Physics of Solids 12 (4):199–212. doi:10.1016/0022-5096(64)90019-5.
  • Hosseini, M., A. Ghorbanpour Arani, M. R. Karamizadeh, H. Afshari, and S. Niknejad. 2019. Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow. Wind and Structures 29 (6):457–69.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–8. doi:10.1038/354056a0.
  • Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, IEEE.
  • Kiani, Y. 2017. Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method. Thin-Walled Structures 119:47–57. doi:10.1016/j.tws.2017.05.031.
  • Kiani, Y., R. Dimitri, and F. Tornabene. 2018. Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures 172:472–82. doi:10.1016/j.engstruct.2018.06.006.
  • Lei, Z., L. Zhang, and K. Liew. 2016. Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Composites Part B: Engineering 84:211–21. doi:10.1016/j.compositesb.2015.08.081.
  • Liew, K., Z. Lei, and L. Zhang. 2015. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures 120:90–7. doi:10.1016/j.compstruct.2014.09.041.
  • Liew, K. M., Z. Pan, and L. W. Zhang. 2020. The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy 63 (3):1–17. doi:10.1007/s11433-019-1457-2.
  • Miao, X., C. Li, and Y. Jiang. 2021. Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs. Composite Structures 260:113262. doi:10.1016/j.compstruct.2020.113262.
  • Mirjavadi, S. S., M. Forsat, M. R. Barati, and A. S. Hamouda. 2020. Analysis of nonlinear vibrations of CNT-/fiberglass-reinforced multi-scale truncated conical shell segments. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1768866.
  • Mori, T., and K. Tanaka. 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21 (5):571–4. doi:10.1016/0001-6160(73)90064-3.
  • Naderi Beni, N. 2019. Free vibration analysis of annular sector sandwich plates with FG-CNT reinforced composite face-sheets based on the Carrera’s Unified Formulation. Composite Structures 214:269–92. doi:10.1016/j.compstruct.2019.01.094.
  • Pan, Z. Z., X. Chen, and L. W. Zhang. 2020. Modeling large amplitude vibration of pretwisted hybrid composite blades containing CNTRC layers and matrix cracked FRC layers. Applied Mathematical Modelling 83:640–59. doi:10.1016/j.apm.2020.03.007.
  • Qin, Z., X. Pang, B. Safaei, and F. Chu. 2019. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Composite Structures 220:847–60. doi:10.1016/j.compstruct.2019.04.046.
  • Rao, S. S. 2019. Engineering optimization: Theory and practice. Hoboken, NJ: John Wiley & Sons.
  • Rasoolpoor, M., R. Ansari, and M. Hassanzadeh-Aghdam. 2020. Influences of carbon nanotubes on low velocity impact performance of metallic nanocomposite plates–A coupled numerical approach. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1840392.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  • Seidi, J., and S. Kamarian. 2017. Free vibrations of non-uniform CNT/fiber/polymer nanocomposite beams. Curved and Layered Structures 4 (1):21–30. doi:10.1515/cls-2017-0003.
  • Shi, D. L., X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao. 2004. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology 126 (3):250–7. doi:10.1115/1.1751182.
  • Siddiqui, N. A., S. U. Khan, P. C. Ma, C. Y. Li, and J. K. Kim. 2011. Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing 42 (10):1412–20. doi:10.1016/j.compositesa.2011.06.005.
  • Singh, V., R. Kumar, and S. Patel. 2021. Non-linear vibration and instability of multi-phase composite plate subjected to non-uniform in-plane parametric excitation: Semi-analytical investigation. Thin-Walled Structures 162:107556. doi:10.1016/j.tws.2021.107556.
  • Song, Z., L. Zhang, and K. Liew. 2016. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences 115-116:339–47. doi:10.1016/j.ijmecsci.2016.06.020.
  • Torabi, K., and H. Afshari. 2017. Optimization for flutter boundaries of cantilevered trapezoidal thick plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (5):1545–61. doi:10.1007/s40430-016-0688-2.
  • Torabi, K., and H. Afshari. 2019. Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates. Journal of Sandwich Structures & Materials 21 (2):503–31. doi:10.1177/1099636217697492.
  • Torabi, K., H. Afshari, and F. H. Aboutalebi. 2019. Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. Journal of Sandwich Structures & Materials 21 (8):2887–920. doi:10.1177/1099636217728746.
  • Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J. Reddy. 2019. Multiscale approach for three‐phase CNT/polymer/fiber laminated nanocomposite structures. Polymer Composites 40 (S1):102–26. doi:10.1002/pc.24520.
  • Tornabene, F., N. Fantuzzi, M. Bacciocchi, and E. Viola. 2016. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Composites Part B: Engineering 89:187–218. doi:10.1016/j.compositesb.2015.11.016.
  • Yazdi, A. A. 2019. Nonlinear aeroelastic stability analysis of three-phase nano-composite plates. Mechanics Based Design of Structures and Machines 47 (6):753–68. doi:10.1080/15397734.2019.1610436.
  • Yousefi, A. H., P. Memarzadeh, H. Afshari, and S. J. Hosseini. 2020. Agglomeration effects on free vibration characteristics of three-phase CNT/polymer/fiber laminated truncated conical shells. Thin-Walled Structures 157:107077. doi:10.1016/j.tws.2020.107077.
  • Zhang, L. 2017a. An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform. Engineering Analysis with Boundary Elements 77:10–25. doi:10.1016/j.enganabound.2017.01.004.
  • Zhang, L. 2017b. Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports. Journal of Modeling in Mechanics and Materials 1 (1):20160154. doi:10.1515/jmmm-2016-0154.
  • Zhang, L. 2017c. On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Composite Structures 160:824–37. doi:10.1016/j.compstruct.2016.10.116.
  • Zhang, L., Z. Song, and K. Liew. 2016a. Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Computer Methods in Applied Mechanics and Engineering 300:427–41. doi:10.1016/j.cma.2015.11.029.
  • Zhang, L., Z. Song, and K. Liew. 2016b. Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Composites Part B: Engineering 85:140–9. doi:10.1016/j.compositesb.2015.09.044.
  • Zhao, X., and K. M. Liew. 2011. Free vibration analysis of functionally graded conical shell panels by a meshless method. Composite Structures 93 (2):649–64. doi:10.1016/j.compstruct.2010.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.