152
Views
4
CrossRef citations to date
0
Altmetric
Articles

A memory-dependent thermal-viscoelastic model and its application in heating-induced nonlocal response analysis of a polymer microbeam

ORCID Icon, &
Pages 3965-3985 | Received 24 Apr 2021, Accepted 22 Jun 2021, Published online: 24 Jul 2021

References

  • Abouelregal, A. E., and A. M. Zenkour. 2020. Fractional viscoelastic Voigt's model for initially stressed microbeams induced by ultrashort laser heat source. Waves in Random and Complex Media 30 (4):687–703. doi:10.1080/17455030.2018.1554927.
  • Abouelregal, A. E., and H. Ahmad. 2021. Thermodynamic modeling of viscoelastic thin rotating microbeam based on non-Fourier heat conduction. Applied Mathematical Modelling 91:973–88. doi:10.1016/j.apm.2020.10.006.
  • Aifantis, E. C. 1999. Gradient deformation models at nano, micro and macro scales. Journal of Engineering Materials and Technology 121 (2):189–202. doi:10.1115/1.2812366.
  • Alaimo, A., C. Orlando, and S. Valvano. 2019. Analytical frequency response solution for composite plates embedding viscoelastic layers. Aerospace Science and Technology 92:429–45. doi:10.1016/j.ast.2019.06.021.
  • Alimirzaei, S., M. Mohammadimehr, and A. Tounsi. 2019. Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering Mechanics 71 (5):485–502. doi:10.12989/sem.2019.71.5.485.
  • Biot, M. A. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Borjalilou, V., M. Asghari, and E. Bagheri. 2019. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. Journal of Thermal Stresses 42 (7):801–14. doi:10.1080/01495739.2019.1590168.
  • Caputo, M. 1967. Linear models of dissipation whose Q is almost frequency independent—II. Annals of Geophysics 13 (5):529–39. doi:10.4401/ag-5051.
  • Caputo, M., and F. Mainardi. 1971. A new dissipation model based on memory mechanism. Pure and Applied Geophysics PAGEOPH 91 (1):134–47. doi:10.1007/BF00879562.
  • Carrera, E., and S. Valvano. 2019. A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures. Journal of Thermal Stresses 42 (4):452–74. doi:10.1080/01495739.2018.1474513.
  • Cattaneo, C. 1958. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comptes Rendus Physique 247:431–3.
  • Cinefra, M., S. Valvano, and E. Carrera. 2015. Heat conduction and thermal stress analysis of laminated composites by a variable kinematic MITC9 shell element. Curved and Layered Structures 2 (1):301–20. doi:10.1515/cls-2015-0017.
  • Civalek, Ö., B. Uzun, M. Ö. Yaylı, and B. Akgöz. 2020. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. The European Physical Journal Plus 135 (4):381. doi:10.1140/epjp/s13360-020-00385-w.
  • Currano, L. J., M. Yu, and B. Balachandran. 2010. Latching in a MEMS shock sensor: Modeling and experiments. Sensors and Actuators A: Physical 159 (1):41–50. doi:10.1016/j.sna.2010.02.008.
  • Demir, C., and Ö. Civalek. 2013. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling 37 (22):9355–67. doi:10.1016/j.apm.2013.04.050.
  • Demir, C., and Ö. Civalek. 2017. On the analysis of microbeams. International Journal of Engineering Science 121:14–33. doi:10.1016/j.ijengsci.2017.08.016.
  • Diethelm, K. 2010. Analysis of fractional differential equation: An application-oriented exposition using differential operators of caputo type. Berlin, Heidelberg: Springer-Verlag.
  • Di Paola, M., M. Pirrotta, and A. Valenza. 2011. Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results. Mechanics of Materials 43 (12):799–806. doi:10.1016/j.mechmat.2011.08.016.
  • Durbin, F. 1974. Numerical inversion of Laplace transforms: An effective improvement of Dubner and Abate’s method. The Computer Journal 17 (4):371–6. doi:10.1093/comjnl/17.4.371.
  • Eringen, A. C. 2002. Nonlocal continuum field theories. New York: Springer-Verlag.
  • Ezzat, M. A. 2011. Magneto-thermoelasticity with thermoelectric properties and fractioal derivative heat transfer. Physica B: Condensed Matter 406 (1):30–5. doi:10.1016/j.physb.2010.10.005.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2014. Generalized thermo-viscoelasticity with memory-dependent derivatives. International Journal of Mechanical Sciences 89:470–5. doi:10.1016/j.ijmecsci.2014.10.006.
  • Fleck, N., G. Muller, M. Ashby, and J. Hutchinson. 1994. Strain gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia 42 (2):475–87. doi:10.1016/0956-7151(94)90502-9.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • Green, A. E., and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Haciyev, V. C., A. H. Sofiyev, and N. Kuruoglu. 2019. On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation. Mechanics of Advanced Materials and Structures 26 (10):886–97. doi:10.1080/15376494.2018.1430271.
  • Honig, G., and U. Hirdes. 1984. A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics 10 (1):113–32. doi:10.1016/0377-0427(84)90075-X.
  • Jalaei, M. H., and Ö. Civalek. 2019. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. International Journal of Engineering Science 143:14–32. doi:10.1016/j.ijengsci.2019.06.013.
  • Kong, S. L., S. J. Zhou, Z. F. Nie, and K. Wang. 2009. Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science 47 (4):487–98. doi:10.1016/j.ijengsci.2008.08.008.
  • Kullberg, A., G. J. Morales, and J. E. Maggs. 2014. Comparison of a radial fractional transport model with tokamak experiments. Physics of Plasmas 21 (3):032310. doi:10.1063/1.4868862.
  • Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, Y. L., S. A. Meguid, Y. M. Fu, and D. L. Xu. 2013. Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mechanica 224 (8):1741–55. doi:10.1007/s00707-013-0831-4.
  • Lord, H. W., and Y. A. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Malikan, M., V. B. Nguyen, and F. Tornabene. 2018. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology 21 (4):778–86. doi:10.1016/j.jestch.2018.06.001.
  • Maranganti, R., and P. Sharma. 2007. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters 98 (19):195504. doi:10.1103/PhysRevLett.98.195504.
  • Meral, F. C., T. J. Royston, and R. Magin. 2010. Fractional calculus in viscoelasticity: An experimental study. Communications in Nonlinear Science and Numerical Simulation 15 (4):939–45. doi:10.1016/j.cnsns.2009.05.004.
  • Pang, M., Y. Q. Zhang, and W. Q. Chen. 2015. Transverse wave propagation in viscoelastic carbon nanotubes with small scale and surface effects. Journal of Applied Physics 117 (2):024305. doi:10.1063/1.4905852.
  • Peshkov, V. 1944. Second sound in helium. Journal of Physics 8:381–6.
  • Reddy, J. N. 2007. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45 (2–8):288–307. doi:10.1016/j.ijengsci.2007.04.004.
  • Sobhy, M., and A. M. Zenkour. 2020. The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mechanics of Advanced Materials and Structures 27 (7):525–38. doi:10.1080/15376494.2018.1482579.
  • Sofiyev, A. H. 2018. On the solution of the dynamic stability of heterogeneous orthotropic visco-elastic cylindrical shells. Composite Structures 206:124–30. doi:10.1016/j.compstruct.2018.08.027.
  • Sofiyev, A. H. 2019. About an approach to the determination of the critical time of viscoelastic functionally graded cylindrical shells. Composites Part B: Engineering 156:156–65. doi:10.1016/j.compositesb.2018.08.073.
  • Sofiyev, A. H., Z. Zerin, and N. Kuruoglu. 2020. Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mechanica 231 (1):1–17. doi:10.1007/s00707-019-02502-y.
  • Torii, A., M. Sasaki, K. Hane, and S. Okuma. 1994. Adhesive force distribution on micro-structures investigated by an atomic force microscope. Sensors and Actuators A: Physical 44 (2):153–8. doi:10.1016/0924-4247(94)00798-5.
  • Vahidi-Moghaddam, A., M. R. Hairi-Yazdi, and R. Vatankhah. 2021. Analytical solution for nonlinear forced vibrations of functionally graded micro resontaors. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2021.1873802.
  • Valvano, S., A. Alaimo, and C. Orlando. 2019. Sound transmission analysis of viscoelastic composite multilayered shells structures. Aerospace 6 (6):69. doi:10.3390/aerospace6060069.
  • Vernotte, P. M., and C. R. Hebd. 1958. Paradoxes in the continuous theory of the heat conduction. Comptes Rendus de l'Académie des Sciences de Paris 246:3154–5.
  • Vogt, B. D. 2018. Mechanical and viscoelastic properties of confined amorphous polymers. Journal of Polymer Science Part B: Polymer Physics 56 (1):9–30. doi:10.1002/polb.24529.
  • Wang, J. L., and H. F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–7. doi:10.1016/j.camwa.2011.04.028.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Youssef, H. M. 2010. Theory of fractional order generalized thermoelasticity. Journal Heat Transfer 132 (6):061301. doi:10.1115/1.4000705.
  • Youssef, H. M., and K. A. Elsibai. 2010. State-space approach to vibration of gold nano-beam induced by ramp type heating. Nano-Micro Letters 2 (3):139–48. doi:10.5101/nml.v2i3.p139-148.
  • Yu, Y. J., W. Hu, and X. G. Tian. 2014. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–34. doi:10.1016/j.ijengsci.2014.04.014.
  • Zarezadeh, E., V. Hosseini, and A. Hadi. 2020. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mechanics Based Design of Structures and Machines 48 (4):480–95. doi:10.1080/15397734.2019.1642766.
  • Zhang, Y. H., J. W. Hong, B. Liu, and D. N. Fang. 2010. Strain effect on ferroelectric behaviors of BaTiO3 nanowires: A molecular dynamics study. Nanotechnology 21 (1):015701. doi:10.1088/0957-4484/21/1/015701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.