239
Views
6
CrossRef citations to date
0
Altmetric
Articles

Nonlinear forced vibration and resonance analysis of rotating stiffened FGM truncated conical shells in a thermal environment

ORCID Icon & ORCID Icon
Pages 4063-4087 | Received 11 Feb 2021, Accepted 28 Jun 2021, Published online: 22 Jul 2021

References

  • Ahmadi, H. 2019. Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation. Engineering with Computers 35 (4):1491–505. doi:10.1007/s00366-018-0679-2.
  • Akbari, H., M. Azadi, and H. Fahham. 2020. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1748051.
  • Amabili, M., and P. Balasubramanian. 2020. Nonlinear vibrations of truncated conical shells considering multiple internal resonances. Nonlinear Dynamics 100:77–93. doi:10.1007/s11071-020-05507-8.
  • Anh, V. T. T., and N. D. Duc. 2019. Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments. Acta Mechanica 230 (1):157–78.
  • Aris, H., and H. Ahmadi. 2020. Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment. Mechanics Research Communications 104:103499. doi:10.1016/j.mechrescom.2020.103499.
  • Brush, D. O., B. O. Almroth, and J. Hutchinson. 1975. Buckling of bars, plates, and shells.
  • Chen, C., and L. Dai. 2009. Nonlinear vibration and stability of a rotary truncated conical shell with intercoupling of high and low order modals. Communications in Nonlinear Science and Numerical Simulation 14 (1):254–69. doi:10.1016/j.cnsns.2007.06.007.
  • Civera, M., L. Zanotti Fragonara, and C. Surace. 2019. Using video processing for the full-field identification of backbone curves in case of large vibrations. Sensors 19 (10):2345. doi:10.3390/s19102345.
  • Daneshjou, K., M. Talebitooti, and R. Talebitooti. 2013. Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method. Applied Mathematics and Mechanics 34 (4):437–56. doi:10.1007/s10483-013-1682-8.
  • Dong, Y., Y. Li, D. Chen, and J. Yang. 2018. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi:10.1016/j.compositesb.2018.03.009.
  • Dong, Y., B. Zhu, Y. Wang, L. He, Y. Li, and J. Yang. 2019. Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Applied Mathematical Modelling 71:331–48. doi:10.1016/j.apm.2019.02.024.
  • Duc, N. D., K. Seung-Eock, and D. Q. Chan. 2018. Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. Journal of Thermal Stresses 41 (3):331–65. doi:10.1080/01495739.2017.1398623.
  • Dung, D. V., L. T. N. Anh, and L. K. Hoa. 2018. Analytical investigation on the free vibration behavior of rotating FGM truncated conical shells reinforced by orthogonal eccentric stiffeners. Mechanics of Advanced Materials and Structures 25 (1):32–46. doi:10.1080/15376494.2016.1255807.
  • Fu, Y., and C. Chen. 2001. Non-linear vibration of elastic truncated conical moderately thick shells in large overall motion. International Journal of Non-Linear Mechanics 36 (5):763–71. doi:10.1016/S0020-7462(00)00042-1.
  • Gao, K., W. Gao, B. Wu, D. Wu, and C. Song. 2018. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Structures 125:281–93. doi:10.1016/j.tws.2017.12.039.
  • Hua, L. 2000. Frequency characteristics of a rotating truncated circular layered conical shell. Composite Structures 50 (1):59–68. doi:10.1016/S0263-8223(00)00080-5.
  • Irie, T., G. Yamada, and K. Tanaka. 1984. Natural frequencies of truncated conical shells. Journal of Sound and Vibration 92 (3):447–53. doi:10.1016/0022-460X(84)90391-2.
  • Jafari, A., and M. Bagheri. 2006. Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution. Journal of Sound and Vibration 296 (1–2):353–67. doi:10.1016/j.jsv.2006.03.001.
  • Jie, X., and W. Zhang. 2017. Nonlinear vibration analysis of the rotating conical shell. (Ed.), 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC). doi:10.1109/ICCTEC.2017.00051.
  • Kamaloo, A., M. Jabbari, M. Y. Tooski, and M. Javadi. 2019. Nonlinear free vibrations analysis of delaminated composite conical shells. International Journal of Structural Stability and Dynamics 20 (1):2050010. doi:10.1142/S0219455420500108.
  • Kerboua, Y., A. Lakis, and M. Hmila. 2010. Vibration analysis of truncated conical shells subjected to flowing fluid. Applied Mathematical Modelling 34 (3):791–809. doi:10.1016/j.apm.2009.06.028.
  • Lal, A., and N. L. Shegokar. 2017. Thermoelectrically induced nonlinear free vibration analysis of piezo laminated composite conical shell panel with random fiber orientation. Curved and Layered Structures 4 (1):237–54. doi:10.1515/cls-2017-0016.
  • Lam, K., and L. Hua. 1999. On free vibration of a rotating truncated circular orthotropic conical shell. Composites Part B: Engineering 30 (2):135–44. doi:10.1016/S1359-8368(98)00049-3.
  • Li, F.-M., K. Kishimoto, and W.-H. Huang. 2009. The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method. Mechanics Research Communications 36 (5):595–602. doi:10.1016/j.mechrescom.2009.02.003.
  • Li, H., K.-Y. Lam, and T.-Y. Ng. 2005. Rotating shell dynamics. Amsterdam: Elsevier.
  • Liew, K., T. Ng, X. Zhao, and J. Reddy. 2002. Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Computer Methods in Applied Mechanics and Engineering 191 (37–38):4141–57. doi:10.1016/S0045-7825(02)00358-4.
  • Liew, K. M., T. Y. Ng, and X. Zhao. 2005. Free vibration analysis of conical shells via the element-free kp-Ritz method. Journal of Sound and Vibration 281 (3–5):627–45. doi:10.1016/j.jsv.2004.01.005.
  • Mecitoğlu, Z. 1996. Free vibrations of a conical shell with temperature-dependent material properties. Journal of Thermal Stresses 19 (8):711–29. doi:10.1080/01495739608946203.
  • Mehri, M., H. Asadi, and Q. Wang. 2016. Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Computer Methods in Applied Mechanics and Engineering 303:75–100. doi:10.1016/j.cma.2016.01.017.
  • Moghaddam, S. M. F., and H. Ahmadi. 2020. Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin-Walled Structures 151:106642. doi:10.1016/j.tws.2020.106642.
  • Najafov, A., A. Sofiyev, and N. Kuruoglu. 2014. On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings. Acta Mechanica 225 (2):563–80. doi:10.1007/s00707-013-0980-5.
  • Nayfeh, A. H., and D. T. Mook. 2008. Nonlinear oscillations. New York: John Wiley & Sons.
  • Nguyen, P. D., V. D. Quang, V. T. T. Anh, and N. D. Duc. 2019. Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment. International Journal of Structural Stability and Dynamics 19 (12):1950158. doi:10.1142/S021945541950158X.
  • Parhi, A., B. Singh, and S. K. Panda. 2019. Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment. Engineering with Computers 37:1565–77. doi:10.1007/s00366-019-00903-0.
  • Rahmani, M., Y. Mohammadi, and F. Kakavand. 2019. Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings. Steel and Composite Structures 32 (2):239–52.
  • Reddy, J., and C. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: theory and analysis. Boca Raton: CRC Press.
  • Rougui, M., F. Moussaoui, and R. Benamar. 2007. Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells: a semi-analytical approach. International Journal of Non-Linear Mechanics 42 (9):1102–15. doi:10.1016/j.ijnonlinmec.2007.06.004.
  • Shakouri, M. 2019. Free vibration analysis of functionally graded rotating conical shells in thermal environment. Composites Part B: Engineering 163:574–84. doi:10.1016/j.compositesb.2019.01.007.
  • Sheng, G., and X. Wang. 2017. The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dynamics 87 (2):1095–109. doi:10.1007/s11071-016-3100-y.
  • Sofiyev, A. 2012. The non-linear vibration of FGM truncated conical shells. Composite Structures 94 (7):2237–45. doi:10.1016/j.compstruct.2012.02.005.
  • Sofiyev, A. 2014. The combined influences of heterogeneity and elastic foundations on the nonlinear vibration of orthotropic truncated conical shells. Composites Part B: Engineering 61:324–39. doi:10.1016/j.compositesb.2014.01.047.
  • Sofiyev, A. 2019. Review of research on the vibration and buckling of the FGM conical shells. Composite Structures 211:301–17. doi:10.1016/j.compstruct.2018.12.047.
  • Sofıyev, A., and N. Kuruoglu. 2015. Large-amplitude vibration of the geometrically imperfect FGM truncated conical shell. Journal of Vibration and Control 21 (1):142–56. doi:10.1177/1077546313480998.
  • Talebitooti, M. 2013. Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Archive of Applied Mechanics 83 (5):765–81. doi:10.1007/s00419-012-0716-3.
  • Talebitooti, M. 2018. Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends. Mechanics of Advanced Materials and Structures 25 (2):155–65. doi:10.1080/15376494.2016.1255809.
  • Talebitooti, M., K. Daneshjou, and R. Talebitooti. 2013. Vibration and critical speed of orthogonally stiffened rotating FG cylindrical shell under thermo-mechanical loads using differential quadrature method. Journal of Thermal Stresses 36 (2):160–88. doi:10.1080/01495739.2013.764807.
  • Tong, L. 1996. Effect of axial load on free vibration of orthotropic truncated conical shells.
  • Ueda, T. 1979. Non-linear free vibrations of conical shells. Journal of Sound and Vibration 64 (1):85–95. doi:10.1016/0022-460X(79)90574-1.
  • Vu, T. T. A., and D. N. Pham. 2018. Investigation on nonlinear dynamic response and free vibration of FG-CNTs reinforced composite truncated conical shells in the thermal environment.
  • Wu, C. P., and L. Y. Chiu. 2020. Three-dimensional free vibration analysis of rotating sandwich functionally graded truncated conical shells under various boundary conditions. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1864400.
  • Wu, C. P., and H. Y. Huang. 2020. A semianalytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells. Mechanics Based Design of Structures and Machines 48 (4):433–58. doi:10.1080/15397734.2019.1636657.
  • Xu, C., Z. Xia, and C. Chia. 1996. Non-linear theory and vibration analysis of laminated truncated, thick, conical shells. International Journal of Non-Linear Mechanics 31 (2):139–54. doi:10.1016/0020-7462(95)00051-8.
  • Zhao, T., Y. Ma, H. Zhang, and J. Yang. 2020. Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets. Materials 13 (24):5610. doi:10.3390/ma13245610.
  • Zhao, T., Y. Yang, H. Pan, H. Zhang, and H. Yuan. 2021a. Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets. The Journal of Strain Analysis for Engineering Design. doi:10.1177/0309324720985758.
  • Zhao, T. Y., Y. S. Cui, H. G. Pan, H. Q. Yuan, and J. Yang. 2021b. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk–shaft assembly with whirl motion. International Journal of Mechanical Sciences 197:106335. doi:10.1016/j.ijmecsci.2021.106335.
  • Zhao, T. Y., Y. S. Cui, Y. Q. Wang, and H. G. Pan. 2021f. Vibration characteristics of graphene nanoplatelet reinforced disk–shaft rotor with eccentric mass. Mechanics of Advanced Materials and Structures. doi:10.1080/15376494.2021.1904525.
  • Zhao, T. Y., L. P. Jiang, H. G. Pan, J. Yang, and S. Kitipornchai. 2021c. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Composite Structures 262:113362. doi:10.1016/j.compstruct.2020.113362.
  • Zhao, T. Y., Z. Y. Jiang, Z. Zhao, L. Y. Xie, and H. Q. Yuan. 2021d. Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets. The Journal of Strain Analysis for Engineering Design. doi:10.1177/0309324720986904.
  • Zhao, T. Y., Z. F. Liu, H. G. Pan, H. Y. Zhang, and H. Q. Yuan. 2021g. Vibration characteristics of functionally graded porous nanocomposite blade–disk–shaft rotor system reinforced with graphene nanoplatelets. Applied Composite Materials 28 (3):717–5. ‏ doi:10.1007/s10443-021-09880-4.
  • Zhao, T. Y., Y. Ma, H. Y. Zhang, H. G. Pan, and Y. Cai. 2021e. Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade–disk assembly with a setting angle. Applied Mathematical Modelling 93:578–96. doi:10.1016/j.apm.2020.12.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.