299
Views
6
CrossRef citations to date
0
Altmetric
Articles

An improved first order approximate reliability analysis method for uncertain structures based on evidence theory

ORCID Icon, , , &
Pages 4137-4154 | Received 17 May 2020, Accepted 13 Jul 2021, Published online: 01 Aug 2021

References

  • Agarwal, H., J. E. Renaud, E. L. Preston, and D. Padmanabhan. 2004. Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering & System Safety 85 (1-3):281–94. doi:10.1016/j.ress.2004.03.017.
  • Ben-Haim, Y. 1994. A non-probabilistic concept of reliability. Structural Safety 14 (4):227–45. doi:10.1016/0167-4730(94)90013-2.
  • Cao, L. X., J. Liu, X. Han, C. Jiang, and Q. M. Liu. 2018. An efficient evidence-based reliability analysis method via piecewise hyperplane approximation of limit state function. Structural and Multidisciplinary Optimization 58 (1):201–13. doi:10.1007/s00158-017-1889-8.
  • Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 9 (1):1–38.
  • Dong, W. M., and H. C. Shah. 1987. Vertex method for computing functions of fuzzy variable. Fuzzy Sets and Systems 24 (1):65. doi:10.1016/0165-0114(87)90114-X.
  • Du, X. P. 2008. Unified uncertainty analysis by the first order reliability method. Journal of Mechanical Design 130 (9):1–10. 091401). doi:10.1115/1.2943295.
  • Du, X. P. 2007. Interval reliability analysis. In International design engineering technical conference and computers and information in engineering conference, Las Vegas, NV. doi:10.1115/DETC2007-34582.
  • Elishakoff, I. 1995. Discussion on a non-probabilistic concept of reliability. Journal of Mechanical Design 17 (3):195–199.
  • Gogu, C., Y. Qiu, S. Segonds, and C. Bes. 2012. Optimization based algorithms for uncertainty propagation through functions with multidimensional output within evidence theory. Journal of Mechanical Design 134 (10):100914(1)–100914(8). doi:10.1115/1.4007393.
  • Hasofer, A. M., and N. C. Lind. 1974. Exact and invariant second-moment code format. Journal of the Engineering Mechanics Division 100 (1):111–121. doi:10.1061/JMCEA3.0001848.
  • Helton, J. C., J. D. Johnson, and W. L. Oberkampf. 2004. An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering & System Safety 85 (1-3):39–71. doi:10.1016/j.ress.2004.03.025.
  • Hu, L., X. Q. Bao, M. Lin, C. Yu, and F. Wang. 2021. Research on risky driving behavior evaluation model based on CIDAS real data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235 (8):2176–2187. doi:10.1177/0954407020985972.
  • Hu, L., X. Hu, J. Wang, A. Kuang, W. Hao, and M. Lin. 2020. Casualty risk of e-bike rider struck by passenger vehicle using China in-depth accident data. Traffic Injury Prevention 21 (4):283–287. doi:10.1080/15389588.2020.1747614.
  • Jiang, C., X. Han, and G. P. Liu. 2008. A sequential nonlinear interval number programming method for uncertain structures. Computer Methods in Applied Mechanics and Engineering 197 (49-50):4250–4265. doi:10.1016/j.cma.2008.04.027.
  • Jiang, C., Z. Zhang, X. Han, and J. Liu. 2013. A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Computers & Structures 129:1–12. doi:10.1016/j.compstruc.2013.08.007.
  • Keshtegar, B., and S. P. Zhu. 2019. Three-term conjugate approach for structural reliability analysis. Applied Mathematical Modelling 76:428–442. doi:10.1016/j.apm.2019.06.022.
  • Klir, G. 2004. Generalized information theory: Aims, results, and open problems. Reliability Engineering & System Safety 85 (1-3):21–38. doi:10.1016/j.ress.2004.03.003.
  • Liu, J., L. X. Cao, C. Jiang, B. Y. Ni, and D. Q. Zhang. 2020b. Parallelotope-formed evidence theory model for quantifying uncertainties with correlations. Applied Mathematical Modelling 77:32–48. doi:10.1016/j.apm.2019.07.017.
  • Liu, X., Q. Fu, N. H. Ye, and L. R. Yin. 2019. The multi-objective reliability-based design optimization for structure based on probability and ellipsoidal convex hybrid model. Structural Safety 77:48–56. doi:10.1016/j.strusafe.2018.11.004.
  • Liu, X., Z. X. Kuang, L. R. Yin, and L. Hu. 2017. Structural reliability analysis based on probability and probability box hybrid model. Structural Safety 68:73–84. doi:10.1016/j.strusafe.2017.06.002.
  • Liu, X., X. Liu, Z. H. Zhou, and L. Hu. 2021. An efficient multi-objective optimization method based on the adaptive approximation model of the radial basis function. Structural and Multidisciplinary Optimization 63 (3):1385–1403. doi:10.1007/s00158-020-02766-2.
  • Liu, X., X. Y. Wang, L. Sun, and Z. H. Zhou. 2019. An Efficient Multi-Objective Optimization Method for Uncertain Structures Based on Ellipsoidal Convex Model. Structural and Multidisciplinary Optimization 59 (6):2189–2203. doi:10.1007/s00158-018-2185-y.
  • Liu, X., X. Y. Wang, J. Xie, and B. T. Li. 2020a. Construction of probability box model based on maximum entropy principle and corresponding hybrid reliability analysis approach. Structural and Multidisciplinary Optimization 61 (2):599–617. doi:10.1007/s00158-019-02382-9.
  • Lógó, J. 2007. New Type of Optimality Criteria Method in Case of Probabilistic Loading Conditions. Mechanics Based Design of Structures and Machines 35 (2):147–162. doi:10.1080/15397730701243066.
  • Lógó, J., M. Ghaemi, and M. M. Rad. 2009. Optimal Topologies in Case of Probabilistic Loading: The Influence of Load Correlation. Mechanics Based Design of Structures and Machines 37 (3):327–348. doi:10.1080/15397730902936328.
  • Luo, Y. J., Z. Kang, and A. Li. 2009. Structural reliability assessment based on probability and convex set mixed model. Computers & Structures 87 (21-22):1408–1415. doi:10.1016/j.compstruc.2009.06.001.
  • Meng, D. B., Z. G. Hu, P. Wu, S. P. Zhu, A. F. O. Correia José, and A. M. P. De Jesus. 2020. Reliability-based optimization for offshore structures using saddlepoint approximation. Proceedings of the Institution of Civil Engineers - Maritime Engineering 173 (2):33–42. doi:10.1680/jmaen.2020.2.
  • Meng, D. B., T. W. Xie, P. Wu, C. He, Z. G. Hu, and X. Y. Lv. 2021. An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems. Structures 32:997–1004. doi:10.1016/j.istruc.2021.03.020.
  • Meng, D. B., T. W. Xie, P. Wu, S. P. Zhu, Z. G. Hu, and Y. Li. 2020. Uncertainty-based design and optimization using first order saddlepoint approximation method for multidisciplinary engineering systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 6 (3):04020028. doi:10.1061/AJRUA6.0001076.
  • Mourelatos, Z. P., and J. Zhou. 2006. A design optimization method using evidence theory. Journal of Mechanical Design 2:1–9.
  • Nocedal, J., and S. J. Wright. 1999. Numerical optimization, New York: Springer.
  • Oberguggenberger. 2015. Analysis and computation with hybrid random set stochastic models. Structural Safety 52:233–243. doi:10.1016/j.strusafe.2014.05.008.
  • Oberkampf, W. L., and J. C. Helton. 2001. Mathematical representation of uncertainty. In AIAA2001–1645, non-deterministic approaches forum, Seattle, WA.
  • Oberkampf, W. L., and J. C. Helton. 2002. Investigation of evidence theory for engineering applications. In AIAA2002–1569, 4th non-deterministic approaches forum, Denver, Colorado.
  • Peng, X., Y. Guo, C. Qiu, H. Wu, J. Li, G. Chen, S. Jiang, and Z. Liu. 2021. Reliability optimization design for composite laminated plate considering multiple types of uncertain parameters. Engineering Optimization 53 (2):221–236. doi:10.1080/0305215X.2019.1705289.
  • Peng, X., T. Ye, J. Q. Li, H. P. Wu, S. F. Jiang, and G. H. Chen. 2020. Multi-scale uncertainty quantification of composite laminated plate considering random and interval variables with data driven PCE method. Mechanics of Advanced Materials and Structures :1–11. doi:10.1080/15376494.2020.1741749.
  • Penmetsa, R. C., and R. V. Grandhi. 2003. Uncertainty propagation using possibility theory and function approximations. Mechanics Based Design of Structures and Machines 31 (2):257–279. doi:10.1081/SME-120020293.
  • Rackwitz, R., and B. Flessler. 1978. Structural reliability under combined random load sequences. Computers & Structures 9 (5):489–494. doi:10.1016/0045-7949(78)90046-9.
  • Shafer, G. 1976. A mathematical theory of evidence. NJ: Princeton.
  • Salehghaffari, S., M. Rais-Rohani, E. B. Marin, and D. J. Bammann. 2013. Optimization of structures under material parameter uncertainty using evidence theory. Engineering Optimization 45 (9):1027–1041. doi:10.1080/0305215X.2012.717073.
  • Sentz, K., and S. Ferson. 2002. Combination of evidence in Dempster-Shafer theory. In: SAND2002–0835. report. Sandia National Laboratories.
  • Simon, C., P. Simon, and A. Evsukoff. 2008. Bayesian networks inference algorithm to implement Dempster-Shafer theory in reliability analysis. Reliability Engineering & System Safety 93 (7):950–963. doi:10.1016/j.ress.2007.03.012.
  • Wang, C., and H. G. Matthies. 2018. Evidence theory-based reliability optimization design using polynomial chaos expansion. Computer Methods in Applied Mechanics and Engineering 341:640–657. doi:10.1016/j.cma.2018.07.015.
  • Yager, R. R., J. Kacprzyk, and M. Fedrizzi. 1994. Advances in the Dempster-Shafer theory of evidence. New York: John Wiley & Sons.
  • Yang, Q. W., S. J. Chen, G. Xiao, L. X. Li, T. Liu, and J. H. Feng. 2021. Joint operation of adaptive numerical simulation and adaptive optimization for direct methanol fuel cell performance improvement. Journal of Cleaner Production 289:125630. doi:10.1016/j.jclepro.2020.125630.
  • Zadeh, L. 1965. Fuzzy sets. Information and Control 8 (3):338–353. doi:10.1016/S0019-9958(65)90241-X.
  • Zadeh, L. 1978. Fuzzy set as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1):3–28. doi:10.1016/0165-0114(78)90029-5.
  • Zhang, D. Q., X. Han, C. Jiang, J. Liu, and Q. Li. 2017. Time-dependent reliability analysis through response surface method. Journal of Mechanical Design 139 (4):041404. doi:10.1115/1.4035860.
  • Zhang, Z., C. Jiang, G. G. Wang, and X. Han. 2015. First and second order approximate reliability analysis methods using evidence theory. Reliability Engineering & System Safety 137:40–49. doi:10.1016/j.ress.2014.12.011.
  • Zhang, Z., X. X. Ruan, M. F. Duan, and C. Jiang. 2018. An efficient epistemic uncertainty analysis method using evidence Theory. Computer Methods in Applied Mechanics and Engineering 339:443–466. doi:10.1016/j.cma.2018.04.033.
  • Zhou, Z. H., S. H. Chen, and X. Liu. 2020. The design of linear magnetic negative stiffness element for engineering application using rectangular permanent magnets. Journal of Magnetics 25 (2):172–180. doi:10.4283/JMAG.2020.25.2.172.
  • Zhou, L., Z. Li, Y. Li, N. Zhang, and J. Han. 2017. Structure buckling hybrid reliability analysis of a supercavitating projectile using a model with truncated probability and multi-ellipsoid convex set uncertainties. Mechanics Based Design of Structures and Machines 45 (2):173–189. doi:10.1080/15397734.2016.1160786.
  • Zhu, S. P., Q. Liu, W. Peng, and X. C. Zhang. 2018. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks. International Journal of Mechanical Sciences 142-143:502–517. doi:10.1016/j.ijmecsci.2018.04.050.
  • Zhu, S. P., Q. Liu, J. Zhou, and Z. Y. Yu. 2018. Fatigue reliability assessment of turbinediscs under multi-source uncertainties. Fatigue & Fracture of Engineering Materials & Structures 41 (6):1291–1305. doi:10.1111/ffe.12772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.