800
Views
5
CrossRef citations to date
0
Altmetric
Articles

On the mechanics of shear deformable micro beams under thermo-mechanical loads using finite element analysis and deep learning neural network

ORCID Icon, ORCID Icon &
Pages 6612-6656 | Received 05 Dec 2021, Accepted 24 Feb 2022, Published online: 12 Mar 2022

References

  • Admassu, D., T. Durowade, S. Velicu, S. Sivananthan, and W. Gao. 2021. Estimation of the mechanical stiffness constant of mems-based parallel-plate micro-actuators. Microsystem Technologies 27 (7):2751–9. doi:10.1007/s00542-020-05022-1.
  • Aggarwal, S. L. P. 2019. Data augmentation in dermatology image recognition using machine learning. Skin Research and Technology : official Journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) 25 (6):815–20.
  • Aifantis, E. C. 1999. Strain gradient interpretation of size effects. In Fracture scaling, 299–314. Dordrecht: Springer.
  • Arbind, A., and J. Reddy. 2013. Nonlinear analysis of functionally graded microstructure-dependent beams. Composite Structures 98:272–81. doi:10.1016/j.compstruct.2012.10.003.
  • Arroyo, Á., Á. Herrero, V. Tricio, E. Corchado, and M. Woźniak. 2018. Neural models for imputation of missing ozone data in air-quality datasets. Complexity 2018:1–14. doi:10.1155/2018/7238015.
  • Babaei, H., and M. R. Eslami. 2020. Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory. Mechanics Based Design of Structures and Machines :1–22. doi:10.1080/15397734.2020.1784202.
  • Batra, R., L. Song, and R. Ramprasad. 2021. Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials 6 (8):655–24. doi:10.1038/s41578-020-00255-y.
  • Bayones, F. S., S. Mondal, S. M. Abo-Dahab, and A. A. Kilany. 2021. Effect of moving heat source on a magneto-thermoelastic rod in the context of Eringen’s nonlocal theory under three-phase lag with a memory dependent derivative. Mechanics Based Design of Structures and Machines :1–17. doi:10.1080/15397734.2021.1901735.
  • Beggelman, M., and Y. Smychkovich. Machine learning systems and methods for improved natural language processing. Google Patents 2009.
  • Carlberg, C. 2016. Regression analysis Microsoft excel. Indianapolis, IN: Que Publishing.
  • Chowdhury, A., E. Kautz, B. Yener, and D. Lewis. 2016. Image driven machine learning methods for microstructure recognition. Computational Materials Science 123:176–87. doi:10.1016/j.commatsci.2016.05.034.
  • Cortes, C., and V. Vapnik. 1995. Support-vector networks. Machine Learning 20 (3):273–97. doi:10.1007/BF00994018.
  • Cost estimation of transformer main materials using artificial neural networks. Nirma University International Conference on Engineering (NUiCONE), 1–6. IEEE.
  • Dehrouyeh-Semnani, A. M., and A. Bahrami. 2016. On size-dependent Timoshenko beam element based on modified couple stress theory. International Journal of Engineering Science 107:134–48. doi:10.1016/j.ijengsci.2016.07.006.
  • Dehrouyeh-Semnani, A. M., and M. Nikkhah-Bahrami. 2015. A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory. International Journal of Engineering Science 86:20–5. doi:10.1016/j.ijengsci.2014.10.003.
  • Dias, R., and A. Torkamani. 2019. Artificial intelligence in clinical and genomic diagnostics. Genome Medicine 11 (1):1–12. doi:10.1186/s13073-019-0689-8.
  • Eringen, A. C. 2003. Nonlocal continuum field theories. New York, NY: Springer.
  • Farokhi, H., and M. H. Ghayesh. 2015. Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. International Journal of Engineering Science 91:12–33. doi:10.1016/j.ijengsci.2015.02.005.
  • Gao, Y., and Y. Cui. 2020. Deep transfer learning for reducing health care disparities arising from biomedical data inequality. Nature Communications 11 (1):1–8. doi:10.1038/s41467-020-18918-3.
  • Genty, G., L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, and S. K. Turitsyn. 2021. Machine learning and applications in ultrafast photonics. Nature Photonics 15 (2):91–11. doi:10.1038/s41566-020-00716-4.
  • Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep learning. Houston, TX: MIT press.
  • Gurtin, M., J. Weissmüller, and F. Larche. 1998. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A 78 (5):1093–109. doi:10.1080/01418619808239977.
  • Harris-Warrick, R. M., E. Marder, A. I. Selverston, M. Moulins, T. J. Sejnowski, and T. A. Poggio (Eds.) 1992. Dynamic biological networks: The stomatogastric nervous system. MIT Press.
  • Hebb, D. O. 2005. The organization of behavior: A neuropsychological theory. New York, NY: Psychology Press.
  • Hinton, G. E., and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science (New York, N.Y.) 313 (5786):504–7. doi:10.1126/science.1127647.
  • Iannacci, J. 2020. Towards improved reliability of RF-MEMS: Mechanical aspects and experimental testing of a micro-switch design with embedded active self-recovery mechanism to counteract stiction. Microsystem Technologies 26 (12):3917–0. doi:10.1007/s00542-020-04886-7.
  • Ike, C. 2019. Timoshenko beam theory for the flexural analysis of moderately thick beams–variational formulation and closed form solutions. Tecnica Italiana–Italian Journal of Engineering Sciences 63 (1):34–45.
  • Indurkhya, N., and F. J. Damerau. 2010. Handbook of natural language processing. New York, NY: Chapman and Hall/CRC.
  • Kahrobaiyan, M., M. Asghari, and M. Ahmadian. 2014. A Timoshenko beam element based on the modified couple stress theory. International Journal of Mechanical Sciences 79:75–83. doi:10.1016/j.ijmecsci.2013.11.014.
  • Khaniki, H. B., and S. Rajasekaran. 2018. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory. Materials Research Express 5 (5):055703. doi:10.1088/2053-1591/aabe62.
  • Kocatürk, T., and M. Şimşek. 2005. Free vibration analysis of Timoshenko beams under various boundary conditions. Sigma 1:30–44.
  • Kumar, M., N. Raghuwanshi, and R. Singh. 2011. Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science 29 (1):11–25. doi:10.1007/s00271-010-0230-8.
  • Lam, D. C., F. Yang, A. Chong, J. Wang, and P. Tong. 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51 (8):1477–508. doi:10.1016/S0022-5096(03)00053-X.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Libbrecht, M. W., and W. S. Noble. 2015. Machine learning applications in genetics and genomics. Nature Reviews. Genetics 16 (6):321–32. doi:10.1038/nrg3920.
  • Lun, F., P. Zhang, F. Gao, and H. Jia. 2006. Design and fabrication of micro-optomechanical vibration sensor. Microfabrication Technology 120 (1):61–4.
  • Mahdavi, M. H., A. Farshidianfar, M. Tahani, S. Mahdavi, and H. Dalir. 2008. A more comprehensive modeling of atomic force microscope cantilever. Ultramicroscopy 109 (1):54–60. doi:10.1016/j.ultramic.2008.08.003.
  • Man, Z., K. Lee, D. Wang, Z. Cao, and S. Khoo. 2013. An optimal weight learning machine for handwritten digit image recognition. Signal Processing 93 (6):1624–38. doi:10.1016/j.sigpro.2012.07.016.
  • McCulloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5 (4):115–33. doi:10.1007/BF02478259.
  • Mindlin, R., and H. Tiersten. 1962. Effects of couple-stresses in linear elasticity. In Effects of couple-stresses in linear elasticity. New York, NY: Columbia University.
  • Mohit, S. D., B. K. Gayatri, G. M. Vrushali, L. G. Archana, and R. B. Namrata. 2015. Using artificial neural network classification and invention of intrusion in network intrusion detection system. International Journal of Innovative Research in Computer and Communication Engineering 3 (2).
  • Najafzadeh, M., M. M. Adeli, E. Zarezadeh, and A. Hadi. 2022. Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field. Mechanics Based Design of Structures and Machines 50 (2):726–15. doi:10.1080/15397734.2020.1733602.
  • Neelakanta, P. S., R. Sudhakar, and D. DeGroff. 1991. Langevin machine: A neural network based on stochastically justifiable sigmoidal function. Biological Cybernetics 65 (5):331–8. doi:10.1007/BF00216966.
  • Okada, Y., and Y. Tokumaru. 1984. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 k. Journal of Applied Physics 56 (2):314–20. doi:10.1063/1.333965.
  • Parker, D. B. 1985. Learning-logic: Casting the cortex of the human brain in silicon. Technical Report Tr-47. Cambridge, MA: Massachusetts Institute of Technology, Center for Computational Research in Economics and Management Science.
  • Patterson, D. W. 1998. Artificial neural networks: Theory and applications. Upper Saddle River, NJ: Prentice Hall PTR.
  • Pourasghar, A., W. Yang, J. Brigham, and Z. Chen. 2021. Nonlocal thermoelasticity: Transient heat conduction effects on the linear and nonlinear vibration of single-walled carbon nanotubes. Mechanics Based Design of Structures and Machines. 1–17. doi:10.1080/15397734.2021.1985516.
  • Rajasekaran, S. 2008. Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods. Structural Engineering and Mechanics 28 (2):221–38. doi:10.12989/sem.2008.28.2.221.
  • Rajasekaran, S. 2018. Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC). Engineering with Computers 34 (3):543–63. doi:10.1007/s00366-017-0557-3.
  • Rajasekaran, S., and D. W. Murray. 1973. Incremental finite element matrices. Journal of the Structural Division 99 (12):2423–38. doi:10.1061/JSDEAG.0003667.
  • Rajasekaran, S., and E. N. Tochaei. 2014. Free vibration analysis of axially functionally graded tapered timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49 (4):995–1009. doi:10.1007/s11012-013-9847-z.
  • Rajasekaran, S., and G. V. Pai. 2019. Neural networks, fuzzy systems and evolutionary algorithms: Synthesis and applications. PHI Learning.
  • Rajasekaran, S., and G. V. Pai. 2011. Neural networks, fuzzy logic and genetic algorithm: Synthesis and applications (with cd). New Delhi: PHI Learning Pvt. Ltd.
  • Rajasekaran, S., and H. B. Khaniki. 2017. Bending, buckling and vibration of small-scale tapered beams. International Journal of Engineering Science 120:172–88. doi:10.1016/j.ijengsci.2017.08.005.
  • Rajasekaran, S., and H. B. Khaniki. 2018. Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (11):1–35. doi:10.1007/s40430-018-1460-6.
  • Rajasekaran, S., and H. B. Khaniki. 2019. Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section part i: Theoretical formulations. Thin-Walled Structures 141:627–45. doi:10.1016/j.tws.2019.02.006.
  • Rajasekaran, S., and H. B. Khaniki. 2019. Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass. Applied Mathematical Modelling 72:129–54. doi:10.1016/j.apm.2019.03.021.
  • Rajasekaran, S., and R. Amalraj. 2002. Predictions of design parameters in civil engineering problems using slnn with a single hidden rbf neuron. Computers & Structures 80 (31):2495–505. doi:10.1016/S0045-7949(02)00213-4.
  • Rashvand, K., A. Alibeigloo, and M. Safarpour. 2020. Free vibration and instability analysis of a viscoelastic micro-shell conveying viscous fluid based on modified couple stress theory in thermal environment. Mechanics Based Design of Structures and Machines :1–39. doi:10.1080/15397734.2020.1745079.
  • Reddy, J. 2011. Microstructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids 59 (11):2382–99. doi:10.1016/j.jmps.2011.06.008.
  • Rojas, R. 2013. Neural networks: A systematic introduction. Berlin, Heidelberg: Springer.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-propagating errors. Nature 323 (6088):533–6. doi:10.1038/323533a0.
  • Santos, J., and J. Reddy. 2012. Vibration of Timoshenko beams using non-classical elasticity theories. Shock and Vibration 19 (3):251–6. doi:10.1155/2012/307806.
  • Shahba, A., R. Attarnejad, M. T. Marvi, and S. Hajilar. 2011. Free vibration and stability analysis of axially functionally graded tapered timoshenko beams with classical and non-classical boundary conditions. Composites Part B: Engineering 42 (4):801–8. doi:10.1016/j.compositesb.2011.01.017.
  • Sidorov, G., F. Velasquez, E. Stamatatos, A. Gelbukh, and L. Chanona-Hernández. 2014. Syntactic n-grams as machine learning features for natural language processing. Expert Systems with Applications 41 (3):853–60. doi:10.1016/j.eswa.2013.08.015.
  • Su, C., J. Tong, and F. Wang. 2020. Mining genetic and transcriptomic data using machine learning approaches in parkinson’s disease. Npj Parkinson’s Disease 6 (1):1–10. doi:10.1038/s41531-020-00127-w.
  • Toledo, A., M. Pinzolas, J. Ibarrola, and G. Lera. 2005. Improvement of the neighborhood based Levenberg-Marquardt algorithm by local adaptation of the learning coefficient. IEEE Transactions on Neural Networks 16 (4):988–92. doi:10.1109/TNN.2005.849849.
  • Toupin, R. 1962. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis 11 (1):385–414. doi:10.1007/BF00253945.
  • Wang, G., J. C. Ye, and B. De Man. 2020. Deep learning for tomographic image reconstruction. Nature Machine Intelligence 2 (12):737–48. doi:10.1038/s42256-020-00273-z.
  • Werbos, P. 1974. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph. D. diss., Harvard University
  • Yang, F., A. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Zhang, N., W. Wu, and G. Zheng. 2006. Convergence of gradient method with momentum for two-layer feedforward neural networks. IEEE Transactions on Neural Networks 17 (2):522–5. doi:10.1109/TNN.2005.863460.
  • Zou, J., M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti. 2019. A primer on deep learning in genomics. Nature Genetics 51 (1):12–8. doi:10.1038/s41588-018-0295-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.