148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Closed form solutions for thermo-mechanical buckling analysis of shallow piezo-laminated spherical shells

ORCID Icon, &
Pages 6704-6728 | Received 08 Mar 2021, Accepted 23 Mar 2022, Published online: 15 Apr 2022

References

  • Akhras, G., and W. Li. 2010. Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method. Composite Structures 92 (1):31–8. doi:10.1016/j.compstruct.2009.06.010.
  • Anh, V. T. T., D. H. Bich, and N. D. Duc. 2015. Nonlinear stability of thin FGM annular spherical segment in thermal environment. Vietnam Journal of Mechanics 37 (4):285–302. doi:10.15625/0866-7136/37/4/5962.
  • Audoly, B., and J. W. Hutchinson. 2020. Localization in spherical shell buckling. Journal of the Mechanics and Physics of Solids 136:103720. doi:10.1016/j.jmps.2019.103720.
  • Barati, M. R., and A. M. Zenkour. 2019. Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions.Mechanics Based Design of Structures and Machines 26 (18):1580–8.
  • Bergman, T. L., F. P. Incropera, D. P. Dewitt, and A. S. Lavine. 2011. Fundamentals of heat and mass transfer. New York: John Wiley & Sons.
  • Bich, D. H., and H. Van Tung. 2011. Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Non-Linear Mechanics 46 (9):1195–204. doi:10.1016/j.ijnonlinmec.2011.05.015.
  • Bohlooly, M., and B. Mirzavand. 2016. A closed-form solution for thermal buckling of cross-ply piezolaminated plates. International Journal of Structural Stability and Dynamics 16 (03):1450112. doi:10.1142/S0219455414501120.
  • Bohlooly, M., and B. Mirzavand. 2017. Thermomechanical buckling of hybrid cross-ply laminated rectangular plates. Advanced Composite Materials 26 (5):407–26. doi:10.1080/09243046.2016.1197492.
  • Boroujerdy, M. S., and M. Eslami. 2014. Axisymmetric snap-through behavior of Piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading. International Journal of Pressure Vessels and Piping 120:19–26.
  • Chang, Z.-T., M. A. Bradford, and R. I. Gilbert. 2011. Short-term behaviour of shallow thin-walled concrete dome under uniform external pressure.Thin-Walled Structures 49 (1):112–20. doi:10.1016/j.tws.2010.08.012.
  • Chao, C., T. Tung, and Y. Chern. 1988. Buckling of thick orthotropic spherical shells.Composite Structures 9 (2):113–37. doi:10.1016/0263-8223(88)90003-7.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2020. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1766494.
  • Darvizeh, M., A. Darvizeh, A. Shaterzadeh, and R. Ansari. 2010. Thermal buckling of spherical shells with cut-out. Journal of Thermal Stresses 33 (5):441–58. doi:10.1080/01495731003738432.
  • Dastjerdi, S., B. Akgöz, and Ö. Civalek. 2020. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236.
  • Dastjerdi, S., B. Akgöz, Ö. Civalek, M. Malikan, and V. A. Eremeyev. 2020. On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science 156:103371. doi:10.1016/j.ijengsci.2020.103371.
  • Duc, N. D., V. T. T. Anh, and P. H. Cong. 2014. Nonlinear axisymmetric response of FGM shallow spherical shells on elastic foundations under uniform external pressure and temperature. European Journal of Mechanics - A/Solids 45:80–9. doi:10.1016/j.euromechsol.2013.11.008.
  • Eslami, M., H. Ghorbani, and M. Shakeri. 2001. Thermoelastic buckling of thin spherical shells. Journal of Thermal Stresses 24 (12):1177–98. doi:10.1080/014957301753251746.
  • Étokov, V., and V. Étokova. 1996. Stability of an imperfectly shaped orthotropic spherical shell. International Applied Mechanics 32 (3):196–200. doi:10.1007/BF02086885.
  • Ferreira, A., and J. Barbosa. 2000. Buckling behaviour of composite shells. Composite Structures 50 (1):93–8. doi:10.1016/S0263-8223(00)00090-8.
  • Gupta, N., N. M. Sheriff, and R. Velmurugan. 2008. Experimental and theoretical studies on buckling of thin spherical shells under axial loads. International Journal of Mechanical Sciences 50 (3):422–32. doi:10.1016/j.ijmecsci.2007.10.002.
  • Hosseini, M., and F. Karami. 2019. Buckling analysis of functionally graded shallow spherical shells under external hydrostatic pressure. Journal of Solid Mechanics 11:644–56.
  • Jahanbakhsh, J., M. Eslami, and P. Ghaedi. 2012. Thermal buckling of imperfect deep functionally graded spherical shell. Journal of Thermal Stresses 35 (10):921–46. doi:10.1080/01495739.2012.720534.
  • Jasion, P., and K. Magnucki. 2007. Elastic buckling of barrelled shell under external pressure.Thin-Walled Structures 45 (4):393–9. doi:10.1016/j.tws.2007.04.001.
  • Juhasz, Z., and A. Szekrenyes. 2019. An analytical solution for buckling and vibration of delaminated composite spherical shells. Thin-Walled Structures 148:1–9.
  • Liu, C., Miao, Y. Wang, H., and Feng, Q. 2017. Thermal buckling of thin spherical shells under uniform external pressure and non-linear temperature. Thin-Walled Structures 119:782–94.
  • Liu, D., Y. Zhou, and J. Zhu. 2021. On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: Three-dimensional elasticity solutions. Engineering Structures 226:111376. doi:10.1016/j.engstruct.2020.111376.
  • Ma, Q., Y. Zhu, W. Liang, and J. Zhang. 2018. Buckling and strength of an externally pressurized spherical shell with reinforced opening. International Journal of Pressure Vessels and Piping 165:11–9. doi:10.1016/j.ijpvp.2018.05.010.
  • Malikan, M., M. Krasheninnikov, and V. A. Eremeyev. 2020. Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. International Journal of Engineering Science 148:103210. doi:10.1016/j.ijengsci.2019.103210.
  • Mirzavand, B., and M. Bohlooly. 2015. Thermal buckling of piezolaminated plates subjected to different loading conditions. Journal of Thermal Stresses 38 (10):1138–62. doi:10.1080/01495739.2015.1073506.
  • Mirzavand, B., and M. R. Eslami. 2011. A closed-form solution for thermal buckling of piezoelectric FGM hybrid cylindrical shells with temperature dependent properties. Mechanics of Advanced Materials and Structures 18 (3):185–93. doi:10.1080/15376494.2010.499021.
  • Mirzavand, B., P. Rezapour, and M. Bohlooly. 2016. Thermal buckling of shallow/nonshallow piezoelectric-composite cylindrical shells. Mechanics of Advanced Materials and Structures 23 (10):1236–43. doi:10.1080/15376494.2015.1068403.
  • Moita, J. S., A. L. Araújo, V. F. Correia, and C. M. M. Soares. 2021. Mechanical and thermal buckling of functionally graded axisymmetric shells. Composite Structures 261:113318. doi:10.1016/j.compstruct.2020.113318.
  • Moita, J. S., V. F. Correia, C. M. M. Soares, and J. Herskovits. 2019a. Higher-order finite element models for the static linear and nonlinear behaviour of functionally graded material plate-shell structures. Composite Structures 212:465–75. doi:10.1016/j.compstruct.2019.01.046.
  • Moita, J. S., C. M. M. Soares, C. A. M. Soares, and A. J. Ferreira. 2019b. Elastoplastic and nonlinear analysis of functionally graded axisymmetric shell structures under thermal environment, using a conical frustum finite element model.Composite Structures 226:111186. doi:10.1016/j.compstruct.2019.111186.
  • Muc, A. 1992. Buckling and post-buckling behaviour of laminated shallow spherical shells subjected to external pressure. International Journal of Non-Linear Mechanics 27 (3):465–76. doi:10.1016/0020-7462(92)90013-W.
  • Narayan, D. A., M. Ganapathi, B. Pradyumna, and M. Haboussi. 2019. Investigation of thermo-elastic buckling of variable stiffness laminated composite shells using finite element approach based on higher-order theory. Composite Structures 211:24–40. doi:10.1016/j.compstruct.2018.12.012.
  • Nath, Y., and K. Sandeep. 1993. Postbuckling of symmetrically laminated, moderately thick, axisymmetric shallow spherical shells. International Journal of Mechanical Sciences 35 (11):965–75. doi:10.1016/0020-7403(93)90033-Q.
  • Nie, G. 2003. Analysis of non-linear behaviour of imperfect shallow spherical shells on pasternak foundation by the asymptotic iteration method.International Journal of Pressure Vessels and Piping 80 (4):229–35. doi:10.1016/S0308-0161(03)00043-7.
  • Prakash, T., N. Sundararajan, and M. Ganapathi. 2007. On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps. Journal of Sound and Vibration 299 (1–2):36–43. doi:10.1016/j.jsv.2006.06.060.
  • Rashvand, K., A. Alibeigloo, and M. Safarpour. 2021. Free vibration and instability analysis of a viscoelastic micro-shell conveying viscous fluid based on modified couple stress theory in thermal environment. Mechanics Based Design of Structures and Machines 50:1198–1236. doi:10.1080/15397734.2020.1745079.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton, FL: CRC Press.
  • Saigal, S., R. K. Kapania, and T. Yang. 1986. Geometrically nonlinear finite element analysis of imperfect laminated shells. Journal of Composite Materials 20 (2):197–214. doi:10.1177/002199838602000206.
  • Sayyad, A. S., and Y. M. Ghugal. 2019. Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory. Composite Structures 219:129–46. doi:10.1016/j.compstruct.2019.03.054.
  • Shahsiah, R., M. Eslami, and M. S. Boroujerdy. 2011. Thermal instability of functionally graded deep spherical shell. Archive of Applied Mechanics 81 (10):1455–71. doi:10.1007/s00419-010-0495-7.
  • Shams, A., and M. Porfiri. 2014. Axisymmetric static and dynamic buckling of hollow microspheres. International Journal of Non-Linear Mechanics 61:19–31. doi:10.1016/j.ijnonlinmec.2014.01.005.
  • Shariati, M., and H. Allahbakhsh. 2010. Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings.Thin-Walled Structures 48 (8):620–8. doi:10.1016/j.tws.2010.03.002.
  • Shariyat, M., and M. Eslami. 2000. On thermal dynamic buckling analysis of imperfect laminated cylindrical shells. ZAMM 80 (3):171–82. doi:10.1002/(SICI)1521-4001(200003)80:3<171::AID-ZAMM171>3.0.CO;2-0.
  • Shen, H. S., C. Li, and X. H. Huang. 2021. Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells.Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2021.1880934.
  • Tadi Beni, Y., F. Mehralian, and H. Razavi. 2015. Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory.Composite Structures 120:65–78. doi:10.1016/j.compstruct.2014.09.065.
  • Van Tung, H. 2014. Nonlinear thermomechanical stability of shear deformable FGM shallow spherical shells resting on elastic foundations with temperature dependent properties. Composite Structures 114:107–16. doi:10.1016/j.compstruct.2014.04.004.
  • Van Tung, H., and N. D. Duc. 2014. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Applied Mathematical Modelling 38 (11–12):2848–66. doi:10.1016/j.apm.2013.11.015.
  • Ventsel, E., T. Krauthammer, and E. Carrera. 2002. Thin plates and shells: Theory, analysis, and applications. Applied Mechanics Reviews 55 (4):B72–B73. doi:10.1115/1.1483356.
  • Wagner, H. N. R., C. Huhne, J. Zhang, and W. Tang. 2020. On the imperfection sensitivity and design of tori-spherical shells under external pressure. International Journal of Pressure Vessels and Piping 179:104015. doi:10.1016/j.ijpvp.2019.104015.
  • Wang, J., Z. L. Li, and W. Yu. 2019. Structural similitude for the geometric nonlinear buckling of stiffened orthotropic shallow spherical shells by energy approach.Thin-Walled Structures 138:430–57. doi:10.1016/j.tws.2018.02.006.
  • Wang, X., J. Xiong, and G. Lu. 2013. Effects of thermal and electric environments on lemniscate delaminated buckling near the surface of piezoelectric laminated shells. Mechanics of Advanced Materials and Structures 20 (8):687–95. doi:10.1080/15376494.2012.676710.
  • Xu, C., and C.-Y. Chia. 1995. Non-linear vibration and buckling analysis of laminated shallow spherical shells with holes.Composites Science and Technology 54 (1):67–74. doi:10.1016/0266-3538(95)00038-0.
  • Yamamoto, Y., and K. Kokubo. 1984. Effects of geometrical imperfections and boundaries on the buckling strength of a spherical shell. Computers & Structures 19 (1–2):285–90. doi:10.1016/0045-7949(84)90229-3.
  • Yan, D., M. Pezzulla, and P. M. Reis. 2020. Buckling of pressurized spherical shells containing a through-thickness defect. Journal of the Mechanics and Physics of Solids 138:103923. doi:10.1016/j.jmps.2020.103923.
  • Zeighampour, H., and Y. Tadi Beni. 2014. Cylindrical thin-shell model based on modified strain gradient theory. International Journal of Engineering Science 78:27–47. doi:10.1016/j.ijengsci.2014.01.004.
  • Zhang, J., M. Zhang, W. Tang, W. Wang, and M. Wang. 2017. Buckling of spherical shells subjected to external pressure: A comparison of experimental and theoretical data. Thin-Walled Structures 111:58–64. doi:10.1016/j.tws.2016.11.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.