258
Views
2
CrossRef citations to date
0
Altmetric
Articles

Buckling analysis of FGM plate exposed to different loads conditions

&
Pages 6798-6813 | Received 15 Mar 2022, Accepted 17 Apr 2022, Published online: 28 Apr 2022

References

  • Badiey, M, and M. A. Kouchakzadeh. 2010. Buckling of functionally graded plate (FGP) under shear and in-plane directional loading. 27th International Congress of the Aeronautical Sciences.
  • Bhardwaj, G., I. V. Singh, B. K. Mishra, and T. Q. Bui. 2015. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures 126:347–59. doi:10.1016/j.compstruct.2015.02.066.
  • Bouderba, B., M. Houari, and A. Tounsi. 2013. Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations. Steel & Composite Structures 14 (1):85–104. doi:10.12989/scs.2013.14.1.085.
  • Bouderba, B., and H. M. Berrabah. 2020. Bending response of porous advanced composite plates under themomechanical loads. Mechanics Based Design of Structures and Machines :1–21. doi:10.1080/15397734.2020.1801464.
  • Czechowski, L., and Z. Kołakowski. 2019. The study of buckling and post-buckling of a step-variable FGM box. Materials (Basel, Switzerland) 12 (6):918. https://doi.org/10.3390/ma12060918.
  • Reissner, E. 1945. The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, Transactions 12:A68–A77.
  • Farhatnia, F., M. Latifi, and M. Kadkhodaei. 2011. Buckling of rectangular functionally graded plates under various edge conditions using Stoke’s transformation method. 16th International Conference on Composite Structures. ICCS 16, A. J. M. Ferreira (Editor).
  • Fekrar, A., N. El Meiche, A. Bessaim, A. Tounsi, and E. A. Adda Bedia. 2012. Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory. Steel & Composite Structures 13 (1):91–107. doi:10.12989/scs.2012.13.1.091.
  • Feldman, E., and J. Aboudi. 1997. Buckling analysis of functionally graded plates subjected to uniaxial loading. Composite Structures 38 (1-4):29–36. doi:10.1016/S0263-8223(97)00038-X.
  • Gao, W., Z. Qin, and F. Chu. 2020. Wave propagation in functionally graded porous plates reinforced with grapheme platelets. Aerospace Science and Technology 102:105860. doi:10.1016/j.ast.2020.105860.
  • Ghannadpour, S., H. R. Ovesy, and M. Nassirnia. 2012. An investigation on buckling behaviour of functionally graded plates using finite strip method. Applied Mechanics and Materials 152-154:1470–6. doi:10.4028/www.scientific.net/AMM.152-154.1470.
  • Bellifa, H., A. Bakora, A. Tounsi, A. A. Bousahla, and S. R. Mahmoud. 2017. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel and Composite Structures 25 (3):257–70. doi:10.12989/scs.2017.25.3.257.
  • Huang, Y., and X. F. Li. 2010. Buckling of functionally graded circular columns including shear deformation. Materials and Design 31 (7):3159–66. doi:10.1016/j.matdes.2010.02.032.
  • Ramu, I, and S. C. Mohanty. 2014. Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load. 1st International Conference on Structural Integrity, ICONS, Procedia Engineering 86, 748–757. doi:10.1016/j.proeng.2014.11.094.
  • Kaysser, W. A., and B. Ilschner. 1995. FGM research activities in Europe. MRS Bulletin 20 (1):22–6. doi:10.1557/S0883769400048879.
  • Koizumi, M. 1993. The concept of FGM. In Ceramic transactions, functionally graded materials, 34, pp :3–10.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1-2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Koizumi, M., and M. Niino. 1995. Overview of FGM research in Japan. MRS Bulletin 20 (1):19–21. doi:10.1557/S0883769400048867.
  • Kołakowski, Z., and R. J. Mania. 2013. Semi-analytical method versus the FEM for analysis of the local post-buckling of thin-walled composite structures. Composite Structures 97:99–106. doi:10.1016/j.compstruct.2012.10.035.
  • Kolakowski, Z., R. J. Mania, and J. Grudziecki. 2015. Local nonsymmetric post-buckling equilibrium path in thin FGM plate. Eksploatacja i Niezawodnosc - Maintenance and Reliability 17 (1):135–42. doi:10.17531/ein.2015.1.18.
  • Liu, Y., Z. Qin, and F. Chu. 2021a. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201:106474. doi:10.1016/j.ijmecsci.2021.106474.
  • Liu, Y., Z. Qin, and F. Chu. 2021b. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Applied Mathematics and Mechanics 42 (6):805–18. doi:10.1007/s10483-021-2740-7.
  • Mahdavian, M. 2009. Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading. Journal of Solid Mechanics 1 (3):213–25.
  • Mozafari, H., and A. Ayob. 2012. Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials. Procedia Technology 1:496–504. doi:10.1016/j.protcy.2012.02.108.
  • Naebe, M., and K. Shirvanimoghaddam. 2016. Functionally graded materials: A review of fabrication and properties. Applied Materials Today. 5:223–45. doi:10.1016/j.apmt.2016.10.001.
  • Mindlin, R. D. 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18 (1):31–8. doi:10.1115/1.4010217.
  • Praveen, G. N., and J. N. Reddy. 1998. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures 35 (33):4457. doi:10.1016/S0020-7683(97)00253-9.
  • Qin, Z., S. Zhao, X. Pang, B. Safaei, and F. Chu. 2019a. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. International Journal of Mechanical Sciences 170:105341. doi:10.1016/j.ijmecsci.2019.105341.
  • Qin, Z., X. Pang, B. Safaei, and F. Chu. 2019b. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Composite Structures 220:847–60. doi:10.1016/j.compstruct.2019.04.046.
  • Reddy, B. S., J. S. Kumar, C. E. Reddy, and K. V. Reddy. 2013. Buckling analysis of functionally graded material plates using higher order shear deformation theory. Journal of Composite Materials :1–12.
  • Reddy, J. N. 2000. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering 47 (1-3):663–84. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3 < 663::AID-NME787 > 3.0.CO;2-8.
  • Saha, R., and P. R. Maiti. 2012. Buckling of simply supported FGM plates under uniaxial load. International Journal of Civil and Structural Engineering 2 (4):1036–50.
  • Sahmani, S., and R. Ansari. 2011. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. Journal of Mechanical Science and Technology 25 (9):2365–75. doi:10.1007/s12206-011-0711-6.
  • Sahmani, S., M. Bahrami, and R. Ansari. 2014. Surface energy effects on the nonlinear vibration characteristics of postbuckled third-order shear deformable nanobeams. Composite Structures 116:552–61. doi:http://dx.doi.org/10.1016/j.compstruct.2014.05.035.
  • Sahmani, S., M. Bahrami, and M. M. Aghdam. 2016. Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. International Journal of Engineering Science 99:92–106. doi:http://doi.org/10.1016/j.ijengsci.2015.10.010.
  • Sahmani, S., and M. M. Aghdam. 2017a. Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. International Journal of Mechanical Sciences 122:129–42. doi:http://doi.org/10.1016/j.ijmecsci.2017.01.009.
  • Sahmani, S., and M. M. Aghdam. 2017b. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. Journal of Biomechanics 65:49–60. 10.1016/j.jbiomech.2017.09.033.
  • Sasaki, M., Y. Wang, T. Hirano, and T. Hirai. 1989. Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition. Journal of the Ceramic Society of Japan 97 (1125):539–43. doi:10.2109/jcersj.97.539.
  • Shariat, B., R. Javaheri, and M. R. Eslami. 2005. Buckling of Imperfect Functionally Graded Plates under In-plane Compressive Loading. Thin-Walled Structures 43 (7):1020–36. doi:10.1016/j.tws.2005.01.002.
  • Shimpi, R. P., H. Arya, and N. K. Naik. 2003. A higher order displacement model for the plate analysis. Journal of Reinforced Plastics and Composites. 22 (18):1667–88. doi:10.1177/073168403027618.
  • Sobhy, M. 2020. Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. International Journal of Applied Mechanics 12 (02):2050017. doi:10.1142/S1758825120500179.
  • Suresh, S, and A. Mortensen. 1998. Fundamental of functionally graded materials: Processing and thermomechanical behavior of graded metals and metal-ceramic composites. London: IOM Communications Ltd. ISBN: 1861250630
  • Thai, H. T., and D. H. Choi. 2012. An efficient and simple refined theory for buckling analysis of functionally graded plates. Applied Mathematical Modelling 36 (3):. 008–22. 10.1016/j.apm.2011.07.062.
  • Thinh, T. I., T. M. Tu, T. H. Quoc, and N. V. Long. 2016. Vibration and buckling analysis of functionally graded plates using new eight-unknown higher order shear deformation theory. Latin American Journal of Solids and Structures 13 (3):456–77. doi:10.1590/1679-78252522.
  • Touratier, M. 1991. An efficient standard plate theory. International Journal of Engineering Science 29 (8):901–16. doi:10.1016/0020-7225(91)90165-Y.
  • Yang, J., K. M. Liew, and S. Kitipornchai. 2005. Second-order statistics of the elastic buckling of functionally graded rectangular plates. Composites Science and Technology 65 (7-8):1165–75. doi:10.1016/j.compscitech.2004.11.012.
  • Yang, J., and H. S. Shen. 2003. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Composites Part B: Engineering 34 (2):103–15. doi:10.1016/S1359-8368(02)00083-5.
  • Zenkour, A. M. 2005a. A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses. International Journal of Solids and Structures 42 (18-19):5224–42. doi:10.1016/j.ijsolstr.2005.02.015.
  • Zenkour, A. M. 2005b. A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration. International Journal of Solids and Structures 42 (18-19):5243–58. doi:10.1016/j.ijsolstr.2005.02.016.
  • Zhao, X., Y. Y. Lee, and K. M. Liew. 2009. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures 90 (2):161–71. doi:10.1016/j.compstruct.2009.03.005.
  • Zhu, J., Z. Lai, Z. Yin, J. Jeon, and S. Lee. 2001. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics 68 (1-3):130–5. doi:10.1016/S0254-0584(00)00355-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.