140
Views
0
CrossRef citations to date
0
Altmetric
Articles

The study on the overloading effect on fatigue crack growth considering residual stress relaxation in Al 5456-H38

ORCID Icon, & ORCID Icon
Pages 6843-6862 | Received 21 Aug 2020, Accepted 02 May 2022, Published online: 26 May 2022

References

  • Abaqus/CAE User’s Guide. 2014. Abaqus. Providence, RI: Dassault Systemes Simulia Corp.
  • Anderson, T. L. 2005. Fracture mechanics: Fundamentals and applications. 3rd ed. Boca Raton, FL: CRC Press.
  • ASTM Standard E647 − 13a. 2014. Standard test method for measurement of fatigue crack growth rates. American society for testing and materials, 1–50. West Conshohocken, PA: ASTM International. doi:10.1520/E0647-13A.2.
  • ASTM-E1820-09. 2009. Standard test method for measurement of fracture toughness. West Conshohocken, PA: ASTM International. doi:10.1520/E1820-09.2.
  • Barsoum, Z., and I. Barsoum. 2009. Residual stress effects on fatigue life of welded structures using LEFM. Engineering Failure Analysis 16 (1):449–67. doi:10.1016/j.engfailanal.2008.06.017.
  • British Energy. 2001. Assessment of the integrity of structures containing deffects. 4th ed. Gloucester: British Energy.
  • Černý, I. 2011. Growth and retardation of physically short fatigue cracks in an aircraft Al-alloy after shot peening. Procedia Engineering 10:3411–6. doi:10.1016/j.proeng.2011.04.562.
  • Daneshpour, S., J. Dyck, V. Ventzke, and N. Huber. 2012. Crack retardation mechanism due to overload in base material and laser welds of Al alloys. International Journal of Fatigue 42:95–103. doi:10.1016/j.ijfatigue.2011.07.010.
  • De Matos, P. F. P., and D. Nowell. 2008. Numerical simulation of plasticity-induced fatigue crack closure with emphasis on the crack growth scheme: 2D and 3D analyses. Engineering Fracture Mechanics 75 (8):2087–114. doi:10.1016/j.engfracmech.2007.10.017.
  • Dowling, N. E, and J. A. Begley. 1976. Fatigue crack growth during gross plasticity and the J-integral. In Mechanics of crack growth, eds. J. R. Rice and P. C. Paris, 82–103. West Conshohocken, PA: ASTM International.
  • Elber, W. 1971. The significance of fatigue crack closure. In Damage tolerance in aircraft structures, 230–13. West Conshohocken, PA: ASTM International.
  • Escalero, M., M. Muniz-Calvente, H. Zabala, I. Urresti, R. Branco, and F. V. Antunes. 2021. A methodology for simulating plasticity induced crack closure and crack shape evolution based on elastic–plastic fracture parameters. Engineering Fracture Mechanics 241:107412. doi:10.1016/j.engfracmech.2020.107412.
  • Gardin, C., S. Fiordalisi, C. Sarrazin-Baudoux, M. Gueguen, and J. Petit. 2016. Numerical prediction of crack front shape during fatigue propagation considering plasticity-induced crack closure. International Journal of Fatigue 88:68–77. doi:10.1016/j.ijfatigue.2016.03.018.
  • Ghfiri, R., A. Amrouche, A. Imad, and G. Mesmacque. 2000. Fatigue life estimation after crack repair in 6005 A-T6 aluminum alloy using the cold expansion hole technique. Fatigue Fracture of Engineering Materials and Structures 23 (11):911–6. doi:10.1046/j.1460-2695.2000.00356.x.
  • Gozin, M. H., and M. Aghaie-Khafri. 2012. 2D and 3D finite element analysis of crack growth under compressive residual stress field. International Journal of Solids and Structures 49 (23–24):3316–22. doi:10.1016/j.ijsolstr.2012.07.014.
  • Grinspan, A. S., and R. Gnanamoorthy. 2006. A novel surface modification technique for the introduction of compressive residual stress and preliminary studies on Al alloy AA6063. Surface and Coatings Technology 201 (3–4):1768–75. doi:10.1016/j.surfcoat.2006.03.002.
  • Hombergsmeier, E., V. Holzinger, and U. C. Heckenberger. 2014. Fatigue crack retardation in LSP and SP treated aluminium specimens. Advanced Materials Research 891–892:986–91. doi:10.4028/www.scientific.net/AMR.891-892.986.
  • Ishihara, S., A. J. McEvily, T. Goshima, S. Nishino, and M. Sato. 2008. The effect of the R value on the number of delay cycles following an overload. International Journal of Fatigue 30 (10–11):1737–42. doi:10.1016/j.ijfatigue.2008.02.011.
  • Jones, R. E. 1973. Fatigue crack growth retardation after single-cycle peak overload in Ti-6Al-4V titanium alloy. Engineering Fracture Mechanics 5 (3):585–604. doi:10.1016/0013-7944(73)90042-8.
  • Kashaev, N., V. Ventzke, M. Horstmann, S. Chupakhin, S. Riekehr, R. Falck, E. Maawad, P. Staron, N. Schell, N. Huber, et al. 2017. Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue 98:223–33. doi:10.1016/j.ijfatigue.2017.01.042.
  • Lei, Y., N. O’ Dowd, and G. Webster. 2000. Fracture mechanics analysis of a crack in a residual stress field. International Journal of Fracture 106 (3):195–216. doi:10.1023/A:1026574400858.
  • Li, S., Y. Zhang, L. Qi, and Y. Kang. 2018. Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel. International Journal of Fatigue 106:49–55. doi:10.1016/j.ijfatigue.2017.09.018.
  • Lim, W. K., J. H. Song, and B. V. Sankar. 2003. Effect of ring indentation on fatigue crack growth in an aluminum plate. International Journal of Fatigue 25 (9–11):1271–7. doi:10.1016/j.ijfatigue.2003.08.011.
  • McEvily, A. J., S. Ishihara, and Y. Mutoh. 2004. On the number of overload-induced delay cycles as a function of thickness. International Journal of Fatigue 26 (12):1311–9. doi:10.1016/j.ijfatigue.2004.04.008.
  • Mirzaee-Sisan, A. 2005. The influence of prior thermal and mechanical loading on fracture. England: University of Bristol.
  • Mutoh, Y., G. H. Fair, B. Noble, and R. B. Waterhouse. 1987. The effect of residual stresses induced by shot‐peening on fatigue crack propagation in two high strength aluminium alloys. Fatigue & Fracture of Engineering Materials and Structures 10 (4):261–72. doi:10.1111/j.1460-2695.1987.tb00205.x.
  • Nicoletto, G. 1989. Fatigue crack-tip mechanics in 7075-T6 aluminum alloy from high-sensitivity displacement field measurements. In Nonlinear fracture mechanics: Volume I time-dependent fracture, 415–418. West Conshohocken, PA: ASTM International.
  • Odhiambo, D., and H. Soyama. 2003. Cavitation shotless peening for improvement of fatigue strength of carbonized steel. International Journal of Fatigue 25 (9–11):1217–22. doi:10.1016/S0142-1123(03)00121-X.
  • Ramos, M. S., M. V. Pereira, F. A. Darwish, S. H. motta, and M. A. Carneiro. 2003. Effect of single and multiple overloading on the residual fatigue life of a structural steel. Fatigue Fracture of Engineering Materials and Structures 26 (2):115–21. doi:10.1046/j.1460-2695.2003.00632.x.
  • Ray, P. K., B. B. Verma, and P. K. Mohanthy. 2002. Spot heating induced fatigue crack growth retardation. International Journal of Pressure Vessels and Piping 79 (5):373–6. doi:10.1016/S0308-0161(02)00019-4.
  • Reid, L. 2014. Hole cold expansion - The fatigue mitigation game changer of the past 50 years. Advanced Materials Research 891–892:679–84. doi:10.4028/www.scientific.net/AMR.891-892.679.
  • Rice, J. R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35 (2):379–86. doi:10.1115/1.3601206.
  • Sattar, A., and I. A. Manarvi. 2011. Wrinkling prediction of aluminum 5456-H116 sheet metals under uni-axial and bi-axial loading through FE simulations. International Journal of Multidisciplinary Sciences and Engineering 2 (5):30–5. http://www.ijmse.org/Volume2/Issue5.html
  • Schijve, J, and D. Broek. 1962. The result of a test program based on a gust spectrum with variable amplitude loading. Aircraft Engineering and Aerospace Technology 34:314–6. doi:10.1108/eb033633.
  • Seifi, R., and M. R. Mohammadi. 2018. Effects of tensile overload on crack initiation life and fatigue crack growth in notched specimens. Transactions of the Indian Institute of Metals 71 (9):2339–48. doi:10.1007/s12666-018-1365-1.
  • Shahani, A. R., I. Shakeri, and C. D. Rans. 2020. Two engineering models for predicting the retardation of fatigue crack growth caused by mixed mode overload. International Journal of Fatigue 132:105378. doi:10.1016/j.ijfatigue.2019.105378.
  • Shiraiwa, T., T. Murakami, and M. Enoki. 2019. Effect of overload on fatigue crack growth behavior of thin copper foil. International Journal of Fatigue 126:202–9. doi:10.1016/j.ijfatigue.2019.05.012.
  • Solanki, K., S. R. Daniewicz, and J. C. Newman. 2003. Finite element modeling of plasticity-induced crack closure with emphasis on geometry and mesh refinement effects. Engineering Fracture Mechanics 70 (12):1475–89. doi:10.1016/S0013-7944(02)00168-6.
  • Song, P. S., and G. L. Sheu. 2002. Retardation of fatigue crack propagation by indentation technique. International Journal of Pressure Vessels and Piping 79 (11):725–33. doi:10.1016/S0308-0161(02)00096-0.
  • Song, P. S., and Y. L. Shieh. 2004. Stop drilling procedure for fatigue life improvement. International Journal of Fatigue 26 (12):1333–9. doi:10.1016/j.ijfatigue.2004.04.009.
  • Srawley, J. E., J. L. Swedlow, and E. Roberts. 1970. On the sharpness of cracks compared with Wells’s COD. International Journal of Fracture Mechanics 6 (4):441–4. doi:10.1007/BF00182638.
  • Suresh, S. 1983. Micromechanisms of fatigue crack growth retardation following overloads. Engineering Fracture Mechanics 18 (3):577–93. doi:10.1016/0013-7944(83)90051-6.
  • Turski, M. 2004. High temperature creep cavitation cracking under the action of residual stress in 316H stainless steel. England: University of Manchester.
  • Verma, B. B., and P. K. Ray. 2002. Fatigue crack growth retardation in spot heated mild steel sheet. Bulletin of Materials Science 25 (4):301–7. doi:10.1007/BF02704122.
  • Wahab, M. A., G. R. Rohrsheim, and J. H. Park. 2004. Experimental study on the influence of overload induced residual stress field on fatigue crack growth in aluminium alloy. Journal of Materials Processing Technology 153–154:945–51. doi:10.1016/j.jmatprotec.2004.04.348.
  • Wang, H., J. Zhang, Y. Li, Z. Wang, and J. Wu. 2020. Experimental investigation of overload effects on fatigue crack growth behaviour of 7050-T7451 aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures 43 (12):2928–42. doi:10.1111/ffe.13329.
  • Wang, J., and A. Mirzaee-Sisan. 2018. The effect of plasticity on residual stress generation and redistribution in offshore pipelines. International Journal of Pressure Vessels and Piping 159:101–10. doi:10.1016/j.ijpvp.2017.11.011.
  • Wenman, M. R., A. J. Price, A. Steuwer, P. R. Chard-Tuckey, and A. Crocombe. 2009. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen. International Journal of Pressure Vessels and Piping 86 (12):830–7. doi:10.1016/j.ijpvp.2009.10.006.
  • Wheeler, O. E. 1972. Spectrum loading and crack growth. Journal of Basic Engineering 94 (1):181–6. doi:10.1115/1.3425362.
  • Wu, H., A. Imad, N. Benseddiq, J. Tupiassú Pinho de Castro, and M. A. Meggiolaro. 2010. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method. International Journal of Fatigue 32 (4):670–7. doi:10.1016/j.ijfatigue.2009.09.011.
  • Yuen, B., and F. Taheri. 2006. Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction. International Journal of Fatigue 28 (12):1803–19. doi:10.1016/j.ijfatigue.2005.12.007.
  • Zaroog, O. S., A. Ali, B. B. Sahari, and R. Zahari. 2011. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. International Journal of Fatigue 33 (2):279–85. doi:10.1016/j.ijfatigue.2010.08.012.
  • Zhou, X., H. P. Gaenser, and R. Pippan. 2016. The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks. International Journal of Fatigue 89:77–86. doi:10.1016/j.ijfatigue.2016.02.001.
  • Zhu, L., and M. P. Jia. 2017. A new approach for the influence of residual stress on fatigue crack propagation. Results in Physics 7:2204–12. doi:10.1016/j.rinp.2017.06.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.