622
Views
4
CrossRef citations to date
0
Altmetric
Articles

An investigation of the crashworthiness performance and optimization of tetra-chiral and reentrant crash boxes

, , &
Pages 6881-6904 | Received 09 Dec 2021, Accepted 02 May 2022, Published online: 19 May 2022

References

  • Abbasi, M., S. Reddy, A. Ghafari-Nazari, and M. Fard. 2015. Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members. Thin-Walled Structures 89:31–41. doi:10.1016/j.tws.2014.12.009.
  • Acar, E. 2010. Optimizing the shape parameters of radial basis functions: An application to automobile crashworthiness. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 224 (12):1541–53. doi:10.1243/09544070JAUTO1560.
  • Acar, E. 2015. Increasing automobile crash response metamodel accuracy through adjusted cross validation error based on outlier analysis. International Journal of Crashworthiness 20 (2):107–22. doi:10.1080/13588265.2014.977839.
  • Acar, E., M. A. Guler, B. Gerceker, M. E. Cerit, and B. Bayram. 2011. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-Walled Structures 49 (1):94–105. doi:10.1016/j.tws.2010.08.010.
  • Altin, M., E. Acar, and M. A. Güler. 2018. Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns. Thin-Walled Structures 131:309–23. doi:10.1016/j.tws.2018.06.043.
  • Altin, M., E. Acar, and M. A. Güler. 2021. Crashworthiness optimization of hierarchial hexagonal honeycombs under out-of-plane impact. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (6):963–74. doi:10.1177/0954406220939104.
  • Bernard, M. 1977. Investigation of an aluminum rolling helix crash energy absorber. Final Report no. ADA042084, ARA, Inc., West Covina, CA.
  • Christman, D. R. W. M. Isabell, S. G. Babcock, A. R. McMillan, and S. J. Green. 1977. Measurements of dynamic properties of materials 6061-T6. Technical Report no. AD 735966, General Motors Corporation, Detroit, MI.
  • Fragoso-Medina, O., and F. Velázquez-Villegas. 2021. Aluminum foam to improve crash safety performance: A numerical simulation approach for the automotive industry. Mechanics Based Design of Structures and Machines 1–15. doi:10.1080/15397734.2021.1927076.
  • Gao, D., and C. Zhang. 2018. Theoretical and numerical investigation on in-plane impact performance of chiral honeycomb core structure. Journal of Structural Integrity and Maintenance 3 (2):95–105. doi:10.1080/24705314.2018.1461772.
  • Gao, F. L., Y. C. Bai, C. Lin, and I. Y. Kim. 2019. A time-space kriging-based sequential metamodeling approach for multi-objective crashworthiness optimization. Applied Mathematical Modelling 69:378–404. doi:10.1016/j.apm.2018.12.011.
  • Gao, Q., C. Ge, W. Zhuang, L. Wang, and Z. Ma. 2019. Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Materials and Design 161:22–34. doi:10.1016/j.matdes.2018.11.013.
  • Gao, Q., X. Zhao, C. Wang, L. Wang, and Z. Ma. 2018. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Materials and Design 143:120–30. doi:10.1016/j.matdes.2018.01.063.
  • Guo, Y., J. Zhang, L. Chen, B. Du, H. Liu, L. Chen, W. Li, and Y. Liu. 2020. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerospace Science and Technology 98:105662. doi:10.1016/j.ast.2019.105662.
  • Han, M. S., B. S. Min, and J. U. Cho. 2014. Fracture properties of aluminum foam crash box. International Journal of Automotive Technology 15 (6):945–51. doi:10.1007/s12239-014-0099-2.
  • Hou, S., W. Tan, Y. Zheng, X. Han, and Q. Li. 2014. Optimization design of corrugated beam guardrail based on RBF-MQ surrogate model and collision safety consideration. Advances in Engineering Software 78:28–40. doi:10.1016/j.advengsoft.2014.08.002.
  • Hou, X., Z. Deng, and K. Zhang. 2016. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mechanica Solida Sinica 29 (5):490–501. doi:10.1016/S0894-9166(16)30267-1.
  • Isabell, W. M, and D. R. Christman. 1970. Shock propagation and fracture in 6061-T6 aluminum from wave profile measurements. Technical Report no. AD 705536, General Motors Corporation, Detroit, MI.
  • Jones, D. R., M. Schonlau, and W. J. Welch. 1998. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13 (4):455–92. doi:10.1023/A:1008306431147.
  • Lakes, R. 1993. Materials with structural hierarchy. Nature 361 (6412):511–5. doi:10.1038/361511a0.
  • Lee, W., Y. Jeong, J. Yoo, H. Huh, S. J. Park, S. H. Park, and J. Yoon. 2019. Effect of auxetic structures on crash behavior of cylindrical tube. Composite Structures 208:836–46. doi:10.1016/j.compstruct.2018.10.068.
  • Li, M., X. Lu, X. Zhu, X. Su, and T. Wu. 2019. Research on in-plane quasi-static mechanical properties of gradient tetra-chiral hyper-structures. Advance Engineering Materials 21 (3):1801038. doi:10.1002/adem.201801038.
  • Liu, Y., and X. C. Zhang. 2009. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. International Journal of Impact Engineering 36 (1):98–109. doi:10.1016/j.ijimpeng.2008.03.001.
  • LS-DYNA Support. Accessed December 05, 2021. https://www.dynasupport.com/howtos/material/fromengineering-to-true-strain-true-stress.
  • Lu, H., X. Wang, and T. Chen. 2021. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson’s ratio and enhanced energy absorption. Thin-Walled Structures 160:107366. doi:10.1016/j.tws.2020.107366.
  • Ma, C., H. Lei, J. Hua, Y. Bai, J. Liang, and D. Fang. 2018. Experimental and simulation investigation of the reversible bi-directional twisting response of tetra-chiral cylindrical shells. Composite Structures 203:142–52. doi:10.1016/j.compstruct.2018.07.013.
  • Ma, C., H. S. Lei, J. Liang, W. W. Wu, T. J. Wang, and D. N. Fang. 2018. Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Materials and Design 158:198–212. doi:10.1016/j.matdes.2018.08.022.
  • Nia, A. A., and J. H. Hamedani. 2010. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures 48 (12):946–54. doi:10.1016/j.tws.2010.07.003.
  • Niutta, C. B., E. J. Wehrle, F. Duddeck, and G. Belingardi. 2018. Surrogate modeling in design optimization of structures with discontinuous responses. Structural and Multidisciplinary Optimization 57 (5):1857–69. doi:10.1007/s00158-018-1958-7.
  • Prall, D., and R. S. Lakes. 1997. Properties of a chiral honeycomb with a Poisson’s ratio of -1. International Journal of Mechanical Sciences 39 (3):305–14. doi:10.1016/S0020-7403(96)00025-2.
  • Qi, C., A. Remennikov, L. Pei, S. Yang, Z. Yu, and T. D. Ngo. 2017. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations. Composite Structures 180:161–78. doi:10.1016/j.compstruct.2017.08.020.
  • Qi, C., F. Jiang, C. Yu, and S. Yang. 2019. In plane crushing response of tetra-chiral honeycombs. International Journal of Impact Engineering 130:247–65. doi:10.1016/j.ijimpeng.2019.04.019.
  • Raponi, E., M. Bujny, M. Olhofer, N. Aulig, S. Boria, and F. Duddeck. 2019. Kriging-assisted topology optimization of crash structures. Computer Methods in Applied Mechanics and Engineering 348:730–52. doi:10.1016/j.cma.2019.02.002.
  • Saenz-Dominguez, I., I. Tena, A. Esnaola, M. Sarrionandia, J. Torre, and J. Aurrekoetxea. 2019. Design and characterisation of cellular composite structures for automotive crash-boxes manufactured by out of die ultraviolet cured pultrusion. Composites Part B: Engineering 160:217–24. doi:10.1016/j.compositesb.2018.10.046.
  • Samer, F., H. Samaka, and K. S. Khalid. 2013. Improvement of energy absorption of thin walled hexagonal tube made of magnesium alloy by using trigger mechanism. International Journal of Research in Engineering and Technology 02 (10):173–80. doi:10.15623/ijret.2013.0210025.
  • Sgobba, F. 2018. Optimization of chiral cellular topologies for energy absorption. MS thesis, Politecnico Di Milano, Faculty of Industrial Engineering,
  • Wang, Y., J. Feng, J. Wu, and D. Hu. 2016. Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions. Composite Structures 153 (10):356–68. doi:10.1016/j.compstruct.2016.06.033.
  • World Health Organization. 2018. Global status report on road safety 2018. Accessed December 05, 2021. https://www.who.int/publications/i/item/9789241565684.
  • Wu, Q., Y. Gao, X. Wei, D. Mousanezhad, L. Ma, A. Vaziri, and J. Xiong. 2018. Mechanical properties and failure mechanisms of sandwich panels with ultralightweight three-dimensional hierarchical lattice cores. International Journal of Solids and Structures 132-133:171–87. doi:10.1016/j.ijsolstr.2017.09.024.
  • Wu, W., L. Geng, Y. Niu, D. Qi, X. Cui, and D. Fang. 2018. Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extreme Mechanics Letters 20:104–11. doi:10.1016/j.eml.2018.02.001.
  • Yang, L., O. Harrysson, H. West, and D. Cormier. 2015. Mechanical properties of 3D reentrant honeycomb auxetic structures realized via additive manufacturing. International Journal of Solids and Structures 69-70:475–90. doi:10.1016/j.ijsolstr.2015.05.005.
  • Yildiz, A. R., and K. N. Solanki. 2012. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. The International Journal of Advanced Manufacturing Technology 59 (1-4):367–76. doi:10.1007/s00170-011-3496-y.
  • Zhou, G., Z. D. Ma, G. Li, A. Cheng, L. Duan, and W. Zhao. 2016. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm. Structural and Multidisciplinary Optimization 54 (3):673–84. doi:10.1007/s00158-016-1452-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.