511
Views
1
CrossRef citations to date
0
Altmetric
Articles

Static and vibration analysis of functionally graded gears

, & ORCID Icon
Pages 6928-6946 | Received 25 Feb 2022, Accepted 13 May 2022, Published online: 31 May 2022

References

  • Al-Qrimli, H. F., A. A. Oshkour, F. B. Ismail, and F. A. Mahdi. 2015. Material design consideration for gear component using functional graded materials. International Journal of Materials Engineering Innovation 6 (4):243–56. doi:10.1504/IJMATEI.2015.072849.
  • Arefi, M. 2021. Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells. Mechanics Based Design of Structures and Machines 49 (6):781–810. doi:10.1080/15397734.2019.1698435.
  • Arefi, M., E. Mohammad-Rezaei Bidgoli, R. Dimitri, M. Bacciocchi, and F. Tornabene. 2019. Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Composites Part B: Engineering 166 (August 2018):1–12. doi:10.1016/j.compositesb.2018.11.092.
  • Bayat, M., B. B. Sahari, M. Saleem, A. Ali, and S. v. Wong. 2009. Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory. Applied Mathematical Modelling 33 (11):4215–30. doi:10.1016/j.apm.2009.03.001.
  • Bayat, M., M. Saleem, B. B. Sahari, A. M. S. Hamouda, and E. Mahdi. 2009. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads. International Journal of Pressure Vessels and Piping 86 (6):357–72. doi:10.1016/j.ijpvp.2008.12.006.
  • Catera, P. G., F. Gagliardi, D. Mundo, L. de Napoli, A. Matveeva, and L. Farkas. 2017. Multi-scale modeling of triaxial braided composites for FE-based modal analysis of hybrid metal-composite gears. Composite Structures 182 (August):116–23. doi:10.1016/j.compstruct.2017.09.017.
  • Chang, L., G. Liu, and L. Wu. 2015. A robust model for determining the mesh stiffness of cylindrical gears. Mechanism and Machine Theory 87:93–114. doi:10.1016/j.mechmachtheory.2014.11.019.
  • Chen, K., Y. Huangfu, H. Ma, Z. Xu, X. Li, and B. Wen. 2019. Calculation of mesh stiffness of spur gears considering complex foundation types and crack propagation paths. Mechanical Systems and Signal Processing 130:273–92. doi:10.1016/j.ymssp.2019.05.014.
  • Dai, T., and H. L. Dai. 2016. Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed. Applied Mathematical Modelling 40 (17-18):7689–707. doi:10.1016/j.apm.2016.03.025.
  • Das, S. S., S. S. Das, T. Nampi, and K. Roy. 2021. Functionally grade composite material production. In: Encyclopedia of materials: Composites. Elsevier.
  • Durodola, J. F., and O. Attia. 2000. Deformation and stresses in functionally graded rotating disks. Composites Science and Technology 60 (7):987–95. doi:10.1016/S0266-3538(99)00197-9.
  • Han, S.-W., W.-J. Ji, and Y.-H. Moon. 2014. Fabrication of gear having functionally graded properties by direct laser melting process. Advances in Mechanical Engineering 6:618464. doi:10.1155/2014/618464.
  • Handschuh, R. F., K. E. Laberge, S. Deluca, and R. Pelagalli. 2014. Vibration and operational characteristics of a composite-steel (hybrid) gear. NASA/TM—2014-216646 report 13 (December):80–7.
  • Handschuh, R. F., G. D. Roberts, R. R. Sinnamon, D. B. Stringer, B. D. Dykas, and L. W. Kohlman. 2012. Hybrid gear preliminary results - Application of composites to dynamic mechanical components. Annual Forum Proceedings - AHS International 4 (July):8.
  • Hassanin, H., and K. Jiang. 2010. Functionally graded microceramic components. Microelectronic Engineering 87 (5-8):1610–3. doi:10.1016/j.mee.2009.10.044.
  • Jahromi, B. H., H. Nayeb-Hashemi, and A. Vaziri. 2012. Elasto-plastic stresses in a functionally graded rotating disk. Journal of Engineering Materials and Technology 134 (2):1–11. doi:10.1115/1.4006023.
  • Jelaska, D. 2012. Gears and gear drives. Chichester, West Sussex; Hoboken: John Wiley & Sons.
  • Jing, S., H. Zhang, J. Zhou, and G. Song. 2015. Optimum weight design of functionally graded material gears. Chinese Journal of Mechanical Engineering 28 (6):1186–93. doi:10.3901/CJME.2015.0930.118.
  • Karpat, F., O. Dogan, C. Yuce, and S. Ekwaro-Osire. 2017. An improved numerical method for the mesh stiffness calculation of spur gears with asymmetric teeth on dynamic load analysis. Advances in Mechanical Engineering 9 (8):168781401772185–12. doi:10.1177/1687814017721856.
  • Kordkheili, S. A. H., and R. Naghdabadi. 2007. Thermoelastic analysis of a functionally graded rotating disk. Composite Structures 79 (4):508–16. doi:10.1016/j.compstruct.2006.02.010.
  • Kumar, P., and S. P. Harsha. 2021a. Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment. Mechanics Based Design of Structures and Machines 0 (0):1–31. doi:10.1080/15397734.2021.1971090.
  • Kumar, P., and S. P. Harsha. 2021b. Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Composite Structures 267 (December 2020):113901. doi:10.1016/j.compstruct.2021.113901.
  • Kumar, P., and S. P. Harsha. 2022. Static and vibration response analysis of sigmoid function-based functionally graded piezoelectric non-uniform porous plate. Journal of Intelligent Material Systems and Structures 34:1045389X2210774. doi:10.1177/1045389X221077433.
  • Kumar, V., S. J. Singh, V. H. Saran, and S. P. Harsha. 2021. Exact solution for free vibration analysis of linearly varying thickness FGM plate using Galerkin-Vlasov’s method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235 (4):880–97. doi:10.1177/1464420720980491.
  • LaBerge, K. E., R. F. Handschuh, G. Roberts, and S. Thorp. 2016. Performance investigation of a full-scale hybrid composite bull gear. Annual Forum Proceedings - AHS International 3:2591–7.
  • LaBerge, K. E., J. P. Johnston, R. F. Handschuh, and G. D. Roberts. 2018. Evaluation of a variable thickness hybrid composite bull gear. AHS International 74th Annual Forum & Technology Display, Phoenix, Arizona.
  • Li, S. 2002. Deformation and bending stress analysis of a three-dimensional, thin-rimmed gear. Journal of Mechanical Design 124 (1):129–35. doi:10.1115/1.1427928.
  • Lundvall, O., and A. Klarbring. 2001. Prediction of transmission error in spur gears as a consequence of wear. Mechanics of Structures and Machines 29 (4):431–49. doi:10.1081/SME-100107621.
  • Mohammed, O. D., M. Rantatalo, and J.-O. Aidanpää. 2013. Improving mesh stiffness calculation of cracked gears for the purpose of vibration-based fault analysis. Engineering Failure Analysis 34:235–51. doi:10.1016/j.engfailanal.2013.08.008.
  • Muni, D. V., V. S. Kumar, and G. Muthuveerappan. 2007. Optimization of asymmetric spur gear drives for maximum bending strength using direct gear design method. Mechanics Based Design of Structures and Machines 35 (2):127–45. doi:10.1080/15397730701196637.
  • Muni, D. V., and G. Muthuveerappan. 2009. A comprehensive study on the asymmetric internal spur gear drives through direct and conventional gear design. Mechanics Based Design of Structures and Machines 37 (4):431–61. doi:10.1080/15397730903001783.
  • Naebe, M., and K. Shirvanimoghaddam. 2016. Functionally graded materials: A review of fabrication and properties. Applied Materials Today 5:223–45. doi:10.1016/j.apmt.2016.10.001.
  • Pal, S., and D. Das. 2020. Free vibration behavior of rotating bidirectional functionally-graded micro-disk for flexural and torsional modes in thermal environment. International Journal of Mechanical Sciences 179 (March):105635. doi:10.1016/j.ijmecsci.2020.105635.
  • Politis, D., J. Lin, T. A. Dean, and D. S. Balint. 2014. An investigation into the forging of bi-metal gears. Journal of Materials Processing Technology 214 (11):2248–60. doi:10.1016/j.jmatprotec.2014.04.020.
  • Politis, D. J., N. J. Politis, J. Lin, T. A. Dean, and D. S. Balint. 2016. An analysis of the tooth stress distribution of forged bi-metallic gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (1):124–39.
  • Radzevich, S. P. 2012. Dudley’s handbook of practical gear design & manufacture. 2nd ed. London: CRC Press, Taylor & Francis Group.
  • Saleh, B., J. Jiang, R. Fathi, T. Al-hababi, Q. Xu, L. Wang, D. Song, and A. Ma. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering 201 (August):108376. doi:10.1016/j.compositesb.2020.108376.
  • Sekar, P., and G. Muthuveerappan. 2015. A balanced maximum fillet stresses on normal contact ratio spur gears to improve the load carrying capacity through nonstandard gears. Mechanics Based Design of Structures and Machines 43 (2):150–63. doi:10.1080/15397734.2014.934833.
  • Singh, A. K., and Siddhartha. 2017. Thermal and wear behavior of glass fiber-filled functionally graded material-based polyamide 66 spur gears manufactured by a novel technique. Journal of Tribology 140 (2):21601. doi:10.1115/1.4037335.
  • Singh, A. K., and Siddhartha. 2018a. A novel technique for manufacturing polypropylene based functionally graded materials. International Polymer Processing 33 (2):197–205. doi:10.3139/217.3449.
  • Singh, A. K., and Siddhartha. 2018b. Noise emission form functionally graded materials based polypropylene spur gears - A tribological investigation. Materials Today: Proceedings 5 (2):8199–205. doi:10.1016/j.matpr.2017.11.509.
  • Singh, A. K., and Siddhartha. 2019. Development and investigation on transmission efficiency of functionally graded material-based polybutylene terephthalate spur gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234 (4):473–89. doi:10.1177/1350650119886233.
  • Singh, A. K., P. K. Singh, H. Pradesh, S. Yadav, G. Noida, and U. Pradesh. 2016. Experimental investigation on acoustic emission from functionally graded materials based polymer gear. In: International Conference on Advancements and Recent Innovations in Mechanical, Production and Industrial Engineering. ELK Asia Pacific Journals, 4–7.
  • Singh, S. J., and S. P. Harsha. 2019. Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment. European Journal of Mechanics - A/Solids 76 (March):155–79. doi:10.1016/j.euromechsol.2019.04.005.
  • Smith, J. D. 2003. Gear noise and vibration. New York: Marcel Dekker.
  • Sondhi, L., A. K. Thawait, S. Sanyal, and S. Bhowmick. 2020. Stress and deformation analysis of functionally graded varying thickness profile orthotropic rotating disk. Materials Today: Proceedings 33:5455–60. doi:10.1016/j.matpr.2020.03.258.
  • Spitas, C., and V. Spitas. 2007a. A FEM study of the bending strength of circular fillet gear teeth compared to trochoidal fillets produced with enlarged cutter tip radius. Mechanics Based Design of Structures and Machines 35 (1):59–73. doi:10.1080/15397730601182802.
  • Spitas, V., and C. Spitas. 2007b. Four-parametric design study of the bending strength of circular-fillet versus trochoidal-fillet in gear tooth design using BEM. Mechanics Based Design of Structures and Machines 35 (2):163–78. doi:10.1080/15397730701274210.
  • Tabatabaei, S. J. S., and A. M. Fattahi. 2020. A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines 0 (0):1–12.
  • Thirumurugan, R., and G. Muthuveerappan. 2010. Maximum fillet stress analysis based on load sharing in normal contact ratio spur gear drives. Mechanics Based Design of Structures and Machines 38 (2):204–26. doi:10.1080/15397730903500842.
  • Thirumurugan, R., and G. Muthuveerappan. 2011. Critical loading points for maximum fillet and contact stresses in normal and high contact ratio spur gears based on load sharing ratio. Mechanics Based Design of Structures and Machines 39 (1):118–41. doi:10.1080/15397734.2011.540488.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37-40):2911–35. doi:10.1016/j.cma.2009.04.011.
  • Tornabene, F. 2011. 2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution. Composite Structures 93 (7):1854–76. doi:10.1016/j.compstruct.2011.02.006.
  • Tornabene, F. 2016. General higher-order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels. Mechanics of Advanced Materials and Structures 23 (9):1046–67. doi:10.1080/15376494.2015.1121522.
  • Tornabene, F., A. Liverani, and G. Caligiana. 2012. General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian. Journal of Sound and Vibration 331 (22):4848–69. doi:10.1016/j.jsv.2012.05.036.
  • Tornabene, F., M. Viscoti, and R. Dimitri. 2022. Generalized higher order layerwise theory for the dynamic study of anisotropic doubly -curved shells with a mapped geometry. Engineering Analysis with Boundary Elements 134 (July 2021):147–83. doi:10.1016/j.enganabound.2021.09.017.
  • Tornabene, F., M. Viscoti, R. Dimitri, and J. N. Reddy. 2021. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures 267 (February):113829. doi:10.1016/j.compstruct.2021.113829.
  • Toso, A., F. van Wermeskerken, N. Cappellini, and G. Heirman. 2015. On the effect of lightweight gear blank topology on transmission dynamics. Proceedings of the ASME Design Engineering Technical Conference, 10, 1–7. doi:10.1115/DETC2015-47646.
  • Wadleigh, A. S., and C. Torrance. 1993. Multi-metal composite gear/shaft. Patent 5271287. Yeast 2 (19):4–6.
  • Yadav, S., A. K. Singh, and A. Siddhartha. 2019. Optimization of the operating parameters to minimize gear tooth wear rate and surface temperature of glass fiber filled HDPE based homogeneous and FGM gears. IOP Conference Series: Materials Science and Engineering, 691, 012004. doi:10.1088/1757-899X/691/1/012004.
  • Yilmaz, T. G., O. Doğan, and F. Karpat. 2019. A comparative numerical study of forged bi-metal gears: Bending strength and dynamic response. Mechanism and Machine Theory 141:117–35. doi:10.1016/j.mechmachtheory.2019.07.007.
  • Yilmaz, T. G., O. Doğan, and F. Karpat. 2022. A numerical investigation on the hybrid spur gears: Stress and dynamic analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (1):354–16. doi:10.1177/0954406220982007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.