181
Views
0
CrossRef citations to date
0
Altmetric
Articles

An analytical solution to estimate the critical buckling load of doubly-curved laminates under a combined load of uni-axial compression, in-plane shear and bending moment

ORCID Icon
Pages 6976-6997 | Received 23 Jan 2022, Accepted 13 May 2022, Published online: 31 May 2022

References

  • Amabili, M. 2008. Nonlinear vibrations and stability of shells and plates. Cambridge, UK: Cambridge University Press.
  • Amabili, M. 2014. A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. International Journal of Non-Linear Mechanics 58:57–75. doi:10.1016/j.ijnonlinmec.2013.08.006.
  • Biswal, D. K., S. V. Joseph, and S. C. Mohanty. 2018. Free vibration and buckling study of doubly curved laminated shell panels using higher order shear deformation theory based on sander’s approximation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (20):3612–28. doi:10.1177/0954406217740165.
  • Civalek, Ö., S. Dastjerdi, and B. Akgöz. 2022. Buckling and free vibrations of cnt-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines, Pages 50 (6):1914–8. doi:10.1080/15397734.2020.1766494.
  • Dastjerdi, S., and B. Akgöz. 2018. New static and dynamic analyses of macro and nano FGM plates using exact three-dimensional elasticity in thermal environment. Composite Structures 192:626–41. doi:10.1016/j.compstruct.2018.03.058.
  • Dastjerdi, S., B. Akgöz, and Ö. Civalek. 2020a. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236.
  • Dastjerdi, S., B. Akgöz, Ö. Civalek, M. Malikan, and V. A. Eremeyev. 2020b. On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science 156:103371. doi:10.1016/j.ijengsci.2020.103371.
  • Dastjerdi, S., M. Malikan, V. A. Eremeyev, B. Akgöz, and Ö. Civalek. 2021. Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft. Acta Astronautica 179:330–44. doi:10.1016/j.actaastro.2020.11.005.
  • Habibi, M., A. Mohammadi, H. Safarpour, A. Shavalipour, and M. Ghadiri. 2021. Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines 49 (5):640–58. doi:10.1080/15397734.2019.1697932.
  • Hildebrand, F. B. E. Reissner, and G. B. Thomas. 1949. Notes on the foundations of the theory of small displacements of orthotropic shells, Volume 1833. Washington, DC: National Advisory Committee for Aeronautics.
  • Huan, D. T., T. M. Tu, and T. H. Quoc. 2017. Analytical solutions for bending, buckling and vibration analysis of functionally graded cylindrical panel. Vietnam Journal of Science and Technology 55 (5):587. doi:10.15625/2525-2518/55/5/8843.
  • Javaheri, R., and M. R. Eslami. 2002. Thermal buckling of functionally graded plates. AIAA Journal 40 (1):162–9. doi:10.2514/2.1626.
  • Jones, R. M. 1998. Mechanics of composite materials. Boca Raton, FL: CRC Press.
  • Kang, J.-H., and A. W. Leissa. 2005. Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges. International Journal of Solids and Structures 42 (14):4220–38. doi:10.1016/j.ijsolstr.2004.12.011.
  • Karimiasl, M., F. Ebrahimi, and B. Akgöz. 2019. Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in sma fiber under hygro-thermal loading. Composite Structures 223:110988. doi:10.1016/j.compstruct.2019.110988.
  • Kar, V. R., and S. K. Panda. 2016. Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression. International Journal of Mechanical Sciences 115-116:318–24. doi:10.1016/j.ijmecsci.2016.07.014.
  • Kar, V. R., S. K. Panda, and T. R. Mahapatra. 2016. Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with td and tid properties. Advances in Materials Research 5 (4):205–21. doi:10.12989/amr.2016.5.4.205.
  • Katariya, P. V., and S. K. Panda. 2016. Thermal buckling and vibration analysis of laminated composite curved shell panel. Aircraft Engineering and Aerospace Technology 88 (1):97–107. doi:10.1108/AEAT-11-2013-0202.
  • Katariya, P. V., and S. K. Panda. 2020. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel and Composite Structures. An International Journal 34 (2):279–88.
  • Katariya, P. V., S. K. Panda, C. K. Hirwani, K. Mehar, and O. Thakare. 2017. Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre. Smart Structures and Systems 20 (5):595–605.
  • Kumar Kundu, C., and J.-H. Han. 2009. Vibration and post-buckling behavior of laminated composite doubly curved shell structures. Advanced Composite Materials 18 (1):21–42. doi:10.1163/156855108X385320.
  • Kumar Panda, S., and P. Vaikunthbhai Katariya. 2015. Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading. International Journal of Applied and Computational Mathematics 1 (3):475–90. doi:10.1007/s40819-015-0035-9.
  • Li, L., H. Li, F. Pang, X. Wang, Y. Du, and S. Li. 2017. The modified fourier-ritz approach for the free vibration of functionally graded cylindrical, conical, spherical panels and shells of revolution with general boundary condition. Mathematical Problems in Engineering 2017:1–32. doi:10.1155/2017/9183924.
  • Li, Z.-M., T. Liu, and P. Qiao. 2021. Buckling and postbuckling of anisotropic laminated doubly curved panels under lateral pressure. International Journal of Mechanical Sciences 206:106615. doi:10.1016/j.ijmecsci.2021.106615.
  • Love, A. E. H. 1888. XVI. the small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society of London A 179:491–546.
  • Mantari, J. L., and C. Guedes Soares. 2012. Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory. Composite Structures 94 (8):2640–56. doi:10.1016/j.compstruct.2012.03.018.
  • Mehar, K., P. Kumar Mishra, and S. Kumar Panda. 2021. Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels. Computers & Mathematics with Applications 90:13–24. doi:10.1016/j.camwa.2021.03.010.
  • Mehar, K., P. Kumar Mishra, and S. Panda. 2021. Thermal post-buckling strength prediction and improvement of sma bonded carbon nanotube-reinforced shallow shell panel: a nonlinear fe micromechanical approach. Journal of Pressure Vessel Technology 143 (6):061301. doi:10.1115/1.4050934.
  • Mehar, K., S. Kumar Panda, Y. Devarajan, and G. Choubey. 2019. Numerical buckling analysis of graded cnt-reinforced composite sandwich shell structure under thermal loading. Composite Structures 216:406–14. doi:10.1016/j.compstruct.2019.03.002.
  • Monge, J. C., J. L. Mantari, J. Yarasca, and R. A. Arciniega. 2019. On bending response of doubly curved laminated composite shells using hybrid refined models. Journal of Applied and Computational Mechanics 5 (5):875–99.
  • Nguyen-Van, H., N. Mai-Duy, W. Karunasena, and T. Tran-Cong. 2011. Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Computers & Structures 89 (7-8):612–25. doi:10.1016/j.compstruc.2011.01.005.
  • Panda, S. K., and B. N. Singh. 2013. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with sma fibre. Aerospace Science and Technology 29 (1):47–57. doi:10.1016/j.ast.2013.01.007.
  • Panda, S. K., and B. N. Singh. 2013. Thermal postbuckling behavior of laminated composite spherical shell panel using nfem. Mechanics Based Design of Structures and Machines 41 (4):468–88. doi:10.1080/15397734.2013.797330.
  • Reddy, J. N. 1984. A simple higher-order theory for laminated composite plates.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed. Boca Raton, FL: CRC Press.
  • Reddy, J. N., and C. F. Liu. 1985. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science 23 (3):319–30. doi:10.1016/0020-7225(85)90051-5.
  • Ruocco, E., and V. Mallardo. 2013. Buckling analysis of levy-type orthotropic stiffened plate and shell based on different strain-displacement models. International Journal of Non-Linear Mechanics 50:40–7. doi:10.1016/j.ijnonlinmec.2012.11.007.
  • Sahoo, B., K. Mehar, B. Sahoo, N. Sharma, and S. Kumar Panda. 2021. Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Engineering with Computers 1–17. doi:10.1007/s00366-021-01514-4.
  • Sahoo, B., B. Sahoo, N. Sharma, K. Mehar, and S. Kumar Panda. 2020. Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading. Smart Structures and Systems, an International Journal 26 (5):641–56.
  • Shadmehri, F., S. Hoa, and M. Hojjati. 2014. The effect of displacement field on bending, buckling, and vibration of cross-ply circular cylindrical shells. Mechanics of Advanced Materials and Structures 21 (1):14–22. doi:10.1080/15376494.2012.677102.
  • Soykasap, Ö. 2006. Micromechanical models for bending behavior of woven composites. Journal of Spacecraft and Rockets 43 (5):1093–100. doi:10.2514/1.18010.
  • Thai, H.-T., T.-K. Nguyen, T. P. Vo, and T. Ngo. 2017. A new simple shear deformation plate theory. Composite Structures 171:277–85. doi:10.1016/j.compstruct.2017.03.027.
  • Thompson, J. M. T, and G. W. Hunt. 1973. A general theory of elastic stability. Research supported by the Science Research Council. London and New York: John Wiley and Sons, 332 p.
  • Torabizadeh, M. A. 2015. Buckling of the composite laminates under mechanical loads with different layups using different plate theories. Advanced Composites Letters 24 (1):096369351502400. doi:10.1177/096369351502400103.
  • Tornabene, F, and N. Fantuzzi. 2017. Theory of laminated composite doubly-curved shell structures. Bologna, BO: Società Editrice Esculapio.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.