244
Views
3
CrossRef citations to date
0
Altmetric
Articles

XFEM based thermo-elastic numerical analysis of FGMs with various discontinuities

, &
Pages 6998-7029 | Received 22 Nov 2021, Accepted 20 May 2022, Published online: 01 Jun 2022

References

  • Amit, H. K, and Jeong, K. C. 2008. Interaction integrals for thermal fracture of functionally graded materials. Engineering Fracture Mechanics 75:2542–65. doi:10.1016/j.engfracmech.2007.07.011.
  • Belytschko, T., and T. Black. 1999. crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45 (5):601–20. doi:10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s.
  • Bhardwaj, G., and I. V. Singh. 2015. Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (4):1065–82. doi:10.1007/s40430-014-0232-1.
  • Bhattacharya, S., K. Sharma, and V. Sonkar. 2018. Fatigue fracture of functionally graded materials under elastic-plastic loading conditions using extended finite element method. IntechOpen Chapter 9:169–94. doi:10.5772/intechopen.72778.
  • Bouhala, L., A. Makradi, and S. Belouettar. 2012. Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method. Engineering Fracture Mechanics 88:35–48. doi:10.1016/j.engfracmech.2012.04.001.
  • Duflot, M. 2008. The extended finite element method in thermo-elastic fracture mechanics. International Journal for Numerical Methods in Engineering 74 (5):827–47. doi:10.1002/nme.2197.
  • Ebrahimi, M. T., D. Dini, D. S. Balint, A. P. Sutton, and S. Ozbayraktar. 2018. Discrete crack dynamics: A planar model of crack propagation and crack-inclusion interactions in brittle materials. International Journal of Solids and Structures 152-153:12–27. doi:10.1016/j.ijsolstr.2018.02.036.
  • Gayen, D., R. Tiwari, and D. Chakraborty. 2019. Static and dynamic analyses of cracked on functionally graded 2 structural components: A review. Composites Part B.173:106982. doi:10.1016/j.compositesb.2019.106982.
  • Ghatage, P., S. V. R. Kar, P, and E. Sudhagar. 2020. On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review. Composite Structures 236:111837. doi:10.1016/j.compstruct.2019.111837.
  • Hosseini, S. S., H. Bayesteh, and S. Mohammadi. 2013. Thermo-mechanical XFEM crack propagation analysis of functionally graded material. Materials Science and Engineering: A 561:285–302. doi:10.1016/j.msea.2012.10.043.
  • Huang, K., L. Guo, and H. Yu. 2018. Investigation of mixed-mode dynamic stress intensity factors of an interface crack in bi-materials with an inclusion. Composite Structures 202:491–9. doi:10.1016/j.compstruct.2018.02.078.
  • Jiang, S., C. Du, and C. Gu. 2014. An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM. Structural Engineering and Mechanics 49 (5):597–618. doi:10.12989/sem.2014.49.5.597.
  • Khatri, K., and A. Lal. 2018. Stochastic XFEM based fracture behaviour and crack growth analysis of a plate with hole emanating cracks under biaxial loading. Theoretical and Applied Fracture Mechanics 96:1–22. doi:10.1016/j.tafmec.2018.03.009.
  • Khatri, K., and A. Lal. 2018. Stochastic XFEM fracture and crack propagation behaviour of an isotropic plate with hole emanating radial cracks subjected to various in-plane loadings. Mechanics of Advanced Materials and Structures 25 (9):732–55. doi:10.1080/15376494.2017.1308599.
  • Kim, J. H., and G. H. Paulino. 2002. Finite element evaluation of mixed-mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering 53 (8):1903–35. doi:10.1002/nme.364.
  • Kitey, R., A. V. Phan, H. Tippur, and T. Kaplan. 2006. Modeling of crack growth through particle clusters in brittle matrix by symmetric-Galerkin boundary element method. International Journal of Fracture 141 (1–2):11–25. doi:10.1007/s10704-006-0047-x.
  • Lal, A., and K. Markad. 2019. Stochastic mixed mode stress intensity factor of center cracks FGM plates using XFEM. International Journal of Computational Materials Science and Engineering 08 (03):1950009. doi:10.1142/S204768411950009X.
  • Lal, A., S. B. Mulani, and R. K. Kapania. 2017. Stochastic fracture response and crack growth analysis of laminated composite edge crack beams using extended finite element method. International Journal of Applied Mechanics 09 (04):1750061–94. doi:10.1142/S1758825117500612.
  • Lal, A., S. P. Palekar, S. B. Mulani, and R. K. Kapania. 2017. Stochastic extended finite element implementation for fracture analysis of laminated composite plate with a central crack. Aerospace Science and Technology 60:131–51. doi:10.1016/j.ast.2016.10.028.
  • Li, Z., and Q. Chen. 2002. Crack-inclusion interaction for mode I crack analyzed by Eshelby equivalent inclusion method. 118:29–40. International Journal of Fracture doi:10.1023/a:1022652725943.
  • Li, Z., Q. Sheng, and J. Sun. 2006. A generally applicable approximate solution for mixed-mode crack-inclusion interaction. Acta Mechanica 187 (1–4):1–9. doi:10.1007/s00707-006-0375-y.
  • Liu, X. Y., Q. Z. Xiao, and B. L. Karihaloo. 2004. XFEM for direct evaluation of mixed-mode SIFs in homogenous and bi-materials. 59:1103–18. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.906.
  • Natarajan, S., P. Kerfriden, D. R. Mahapatra, and S. P. A. Bordas. 2014. Numerical analysis of the inclusion-crack interaction by the extended finite element method. International Journal for Computational Methods in Engineering Science and Mechanics 15 (1):26–32. doi:10.1080/15502287.2013.833999.
  • Nojumi, M. M., and X. Wang. 2020. Analysis of crack problems in functionally graded materials under thermo-mechanical loading using graded finite elements. Mechanics Research Communications 106:103534. doi:10.1016/j.mechrescom.2020.103534.
  • Pant, M., I. V. Singh, and B. K. Mishra. 2011. A numerical study of crack interactions under thermo-mechanical load using EFGM. Journal of Mechanical Science and Technology 25 (2):403–13. doi:10.1007/s12206-010-1217-3.
  • Pathak, H. 2020. Crack interaction study in functionally graded materials (FGMs) using XFEM under thermal and mechanical loading environment. Mechanics of Advanced Materials and Structures 27 (11):903–26. doi:10.1080/15376494.2018.1501834.
  • Pathak, H., and A. Singh. 2012. Crack Interactions Study under thermal load using EFGM and XFEM. International Journal on Theoretical and Applied Research in Mechanical Engineering 1 (1):2319–3182.
  • Peng, B., Z. Li, and M. Feng. 2015. The mode I crack-inclusion interaction in orthotropic medium. Engineering Fracture Mechanics 136:185–94. doi:10.1016/j.engfracmech.2015.01.028.
  • Petrova, V., and S. Schmauder. 2014. FGM/homogeneous bi-materials with systems of cracks under thermo-mechanical loading: Analysis by fracture criteria. Engineering Fracture Mechanics 130:12–20. doi:10.1016/j.engfracmech.2014.01.014.
  • Reddy, J. N., and C. D. Chin. 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Sajith, S., K. S. R. K. Murthy, and P. S. Robi. 2018. A simple technique for estimation of mixed mode (i/ii) stress intensity factors. Journal of Mechanics of Materials and Structures 31 (2):141–54. doi:10.2140/jomms.2018.13.141.
  • Sajith, S., K. S. R. K. Murthy, and P. S. Robi. 2020. Estimation of stress intensity factors from crack flank displacements. Materials Today: Proceedings 24:887–94. doi:10.1016/j.matpr.2020.04.399.
  • Saleh, B., J. Jiang, R. Fathi, T. Al- hababi, Q. Xu, L. Wang, D. Song, and A. Ma. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods. Applications and Future Challenges. Composites Part B.201:108376. doi:10.1016/j.compositesb.2020.108376.
  • Sharma, K. 2014. Crack interaction studies using XFEM technique. Journal of Solid Mechanics 6 (4):410–21.
  • Shedbale, A. S., I. V. Singh, and B. K. Mishra. 2013. Nonlinear simulation of an embedded crack in the presence of holes and inclusions by XFEM. Procedia Engineering 64:642–51. doi:10.1016/j.proeng.2013.09.139.
  • Shi, M., H. Wu, L. Li, and G. Chai. 2014. Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique. International Journal of Mechanics and Materials in Design10 (1):65–77. doi:10.1007/s10999-013-9231-0.
  • Singh, I. V., B. K. Mishra, S. Bhattacharya, and R. U. Patil. 2012. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue 36 (1):109–19. doi:10.1016/j.ijfatigue.2011.08.010.
  • Stolarska, M., D. L. Chopp, N. Moës, and N. T. Belytschko. 2001. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering 51 (8):943–60. doi:10.1002/nme.201.
  • Sukumar, N., D. L. Chopp, N. Moës, and T. Belytschko. 2001. Modelling holes and inclusions by level set in the extended finite element method. Computer Methods in Applied Mechanics and Engineering 190 (46-47):6183–200. doi:10.1016/S0045-7825(01)00215-8.
  • Sun, Z., X. Zhuang, and Y. Zhang. 2019. Cracking elements method for simulating complex crack growth. 5 (3):552–62. Journal of Applied and Computational Mechanics doi:10.22055/JACM.2018.27589.1418.
  • Surendran, M., A. L. N. Pramod, and S. Natarajan. 2019. Evaluation of fracture parameters by coupling the edge-based smoothed finite element method and the scaled boundary finite element method. 5 (3):540–51. Journal of Applied and Computational Mechanics doi:10.22055/JACM.2018.24125.1172.
  • Teng, Z. H., D. M. Liao, S. C. Wu, F. Sun, T. Chen, and Z. B. Zhang. 2019. An adaptively refined XFEM for the dynamic fracture problems with micro defects. Theoretical and Applied Fracture Mechanics 103:102255. doi:10.1016/j.tafmec.2019.102255.
  • Tsang, D. K. L., S. O. Oyadiji, and A. Y. T. Leung. 2007. Two-dimensional fractal-like finite element method for thermo-elastic crack analysis. International Journal of Solids and Structures 44 (24):7862–76. doi:10.1016/j.ijsolstr.2007.05.008.
  • Walters, M. C., G. H. Paulino, and R. H. Dodds. 2004. Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermo-mechanical loading. International Journal of Solids and Structures 41 (3-4):1081–118. doi:10.1016/j.ijsolstr.2003.09.050.
  • Wang, Y. B., and K. T. Chau. 2001. A new boundary element method for mixed boundary value problems involving cracks and holes: Interactions between rigid inclusions and cracks. International Journal of Fracture. 110:387–406. doi:10.1023/a:1010853804657.
  • Yu, H., L. Wu, L. Guo, S. Du, and Q. He. 2009. Investigation of mixed-mode stress intensity factors for non-homogeneous materials using an interaction integral method. International Journal of Solids and Structures 46 (20):3710–24. doi:10.1016/j.ijsolstr.2009.06.019.
  • Yu, H., L. Wu, L. Guo, Q. He, and S. Du. 2010. Interaction integral method for the interfacial fracture problems of two non-homogeneous materials. Mechanics of Materials 42 (4):435–50. doi:10.1016/j.mechmat.2010.01.001.
  • Yu, T., and T. Q. Bui. 2018. Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Computers & Structures 196:112–33. doi:10.1016/j.compstruc.2017.11.007.
  • Zhang, J., Z. Qu, Q. Huang, L. Xie, and C. Xiong. 2013. Interaction between cracks and a circular inclusion in a finite plate with the distributed dislocation method. Archive of Applied Mechanics 83 (6):861–73. doi:10.1007/s00419-012-0722-5.
  • Zhao, J. 2019. Modeling of crack growth using a new fracture criteria based peridynamics. 5 (3):498–516. Journal of Applied and Computational Mechanics doi:10.22055/jacm.2017.23515.1160.
  • Zheng, H., J. Sladek, V. Sladek, S. K. Wang, and P. H. Wen. 2021. Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method. Engineering Fracture Mechanics 247:107591. doi:10.1016/j.engfracmech.2021.107591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.