102
Views
7
CrossRef citations to date
0
Altmetric
Articles

Thermo-torsional buckling and postbuckling of thin FGM cylindrical shells with porosities and tangentially restrained edges

& ORCID Icon
Pages 7056-7075 | Received 25 Mar 2022, Accepted 26 May 2022, Published online: 06 Jun 2022

References

  • Babaei, H. 2022. Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation. Composite Structures 286:115199. doi:10.1016/j.compstruct.2022.115199.
  • Babaei, H., and M. R. Eslami. 2021a. On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory. Composite Structures 256:113125. doi:10.1016/j.compstruct.2020.113125.
  • Babaei, H., and M. R. Eslami. 2021b. Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT. Applied Mathematical Modelling 91:1061–80. doi:10.1016/j.apm.2020.10.004.
  • Babaei, H., M. Jabbari, and M. R. Eslami. 2021. The effect of porosity on elastic stability of toroidal shell segments made of saturated porous functionally graded materials. Journal of Pressure Vessel Technology 143 (3):031501. doi:10.1115/1.4048418.
  • Brush, D. O, and B. O. Almroth. 1975. Buckling of bars, plates and shells. New York: McGraw-Hill. https://lib.ugent.be/catalog/rug01:001042810.
  • Chehil, D. S., and S. Cheng. 1968. Elastic buckling of composite cylindrical shells under torsion. Journal of Spacecraft and Rockets 5 (8):973–8. doi:10.2514/3.29398.
  • Cong, P. H., T. M. Chien, N. D. Khoa, and N. D. Duc. 2018. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerospace Science and Technology 77:419–28. doi:10.1016/j.ast.2018.03.020.
  • Cuong, L. T., T. V. Loc, B. Q. Tinh, N. X. Hoang, and M. A. Wahab. 2019. Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates. Composite Structures 221:110838. doi:10.1016/j.compstruct.2019.04.010.
  • Dung, D. V., and L. K. Hoa. 2013. Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Composites Part B 51:300–9. doi:10.1016/j.compositesb.2013.03.030.
  • Gupta, A., and M. Talha. 2018. Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates. Mechanics Based Design of Structures and Machines 46 (6):693–711. doi:10.1080/15397734.2018.1449656.
  • Hieu, P. T., and H. V. Tung. 2019. Thermomechanical nonlinear buckling of pressure-loaded carbon nanotube reinforced composite toroidal shell segment surrounded by an elastic medium with tangentially restrained edges. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (9):3193–207. doi:10.1177/0954406218802942.
  • Hieu, P. T., and H. V. Tung. 2020a. Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Archive of Applied Mechanics 90 (7):1529–46. doi:10.1007/s00419-020-01682-7.
  • Hieu, P. T., and H. V. Tung. 2020b. Thermomechanical postbuckling of pressure-loaded CNT-reinforced composite cylindrical shells under tangential edge constraints and various temperature conditions. Polymer Composites 41 (1):244–57. doi:10.1002/pc.25365.
  • Hieu, P. T., and H. V. Tung. 2021a. Nonlinear buckling behavior of functionally graded material sandwich cylindrical shells with tangentially restrained edges subjected to external pressure and thermal loadings. Journal of Sandwich Structures & Materials 23 (6):2000–27. doi:10.1177/1099636220908855.
  • Hieu, P. T., and H. V. Tung. 2021b. Thermal buckling and postbuckling of CNT-reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. Journal of Thermoplastic Composite Materials 34 (7):861–83. doi:10.1177/0892705719853611.
  • Huang, H., and Q. Han. 2010. Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environments. European Journal of Mechanics – A/Solids 29 (1):42–8. doi:10.1016/j.euromechsol.2009.06.002.
  • Huang, H., Q. Han, N. Feng, and X. Fan. 2011. Buckling of functionally graded cylindrical shells under combined loads. Mechanics of Advanced Materials and Structures 18 (5):337–46. doi:10.1080/15376494.2010.516882.
  • Kim, Y. S., G. A. Kardomateas, and A. Zureick. 1999. Buckling of thick orthotropic cylindrical shells under torsion. Journal of Applied Mechanics 66 (1):41–50. doi:10.1115/1.2789167.
  • Kumar, A., S. L. Das, and P. Wahi. 2015. Instabilities of thin circular cylindrical shells under radial loading. International Journal of Mechanical Sciences 104:174–89. doi:10.1016/j.ijmecsci.2015.10.003.
  • Long, V. T., and H. V. Tung. 2021a. Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities. AIAA Journal 59 (6):2233–41. doi:10.2514/1.J060026.
  • Long, V. T., and H. V. Tung. 2021b. Thermomechanical nonlinear buckling of pressurized shear deformable FGM cylindrical shells including porosities and elastically restrained edges. Journal of Aerospace Engineering 34 (3):04021011. doi:10.1061/(ASCE)AS.1943-5525.0001252.
  • Long, V. T., and H. V. Tung. 2021c. Postbuckling responses of porous FGM spherical caps and circular plates including edge constraints and nonlinear three-parameter elastic foundations. Mechanics Based Design of Structures and Machines 1–23. doi:10.1080/15397734.2021.1956327.
  • Long, V. T., and H. V. Tung. 2021d. Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory. Mechanics of Advanced Materials and Structures 1–10. doi:10.1080/15376494.2021.1969606.
  • Long, V. T., and H. V. Tung. 2022. Buckling behavior of thick porous functionally graded material toroidal shell segments under external pressure and elevated temperature including tangential edge restraint. Journal of Pressure Vessel Technology 144 (5):051310. doi:10.1115/1.4053485.
  • Najafov, A. M., A. H. Sofiyev, and N. Kuruoglu. 2013. Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48 (4):829–40. doi:10.1007/s11012-012-9636-0.
  • Nam, V. H., N. T. Phuong, K. V. Minh, and P. T. Hieu. 2018. Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads. European Journal of Mechanics – A/Solids 72:393–406. doi:10.1016/j.euromechsol.2018.06.005.
  • Nam, V. H., N. T. Trung, and L. K. Hoa. 2019. Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment. Thin-Walled Structures 144:106253. doi:10.1016/j.tws.2019.106253.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Shen, H. S. 2002. Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Composites Science and Technology 62 (7–8):977–87. doi:10.1016/S0266-3538(02)00029-5.
  • Shen, H. S. 2003. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Engineering Structures 25 (4):487–97. doi:10.1016/S0141-0296(02)00191-8.
  • Shen, H. S. 2004. Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures 41 (7):1961–74. doi:10.1016/j.ijsolstr.2003.10.023.
  • Shen, H. S. 2009. Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments. International Journal of Non-Linear Mechanics 44 (6):644–57. doi:10.1016/j.ijnonlinmec.2009.02.009.
  • Shen, H. S. 2014. Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Composite Structures 116:477–88. doi:10.1016/j.compstruct.2014.05.039.
  • Sofiyev, A. H., and N. Kuruoglu. 2013. Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Composites Part B 45 (1):1133–42. doi:10.1016/j.compositesb.2012.09.046.
  • Sofiyev, A. H., and E. Schnack. 2004. The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Engineering Structures 26 (10):1321–31. doi:10.1016/j.engstruct.2004.03.016.
  • Tabiei, A., and G. J. Simitses. 1994. Buckling of moderately thick, laminated cylindrical shells under torsion. AIAA Journal 32 (3):639–47. doi:10.2514/3.12032.
  • Touloukian, Y. S. 1967. Thermophysical properties of high temperature solid materials. New York: MacMillan.
  • Trabelsi, S., A. Frikha, S. Zghal, and F. Dammak. 2018. Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. International Journal of Mechanical Sciences 144:74–89. doi:10.1016/j.ijmecsci.2018.05.033.
  • Trabelsi, S., A. Frikha, S. Zghal, and F. Dammak. 2019. A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures 178:444–59. doi:10.1016/j.engstruct.2018.10.047.
  • Trinh, M. C., T. Mukhopadhyay, and S. E. Kim. 2020. A semi-analytical stochastic buckling quantification of porous functionally graded plates. Aerospace Science and Technology 105:105928. doi:10.1016/j.ast.2020.105928.
  • Tung, H. V. 2014. Postbuckling of functionally graded cylindrical shells with tangential edge restraints and temperature-dependent properties. Acta Mechanica 225 (6):1795–808. doi:10.1007/s00707-013-1011-2.
  • Tung, H. V., and L. T. N. Trang. 2021. Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature. Applied Mathematics and Mechanics 42 (9):1327–48. doi:10.1007/s10483-021-2771-6.
  • Wan, Z., and S. Li. 2017. Thermal buckling analysis of functionally graded cylindrical shells. Applied Mathematics and Mechanics 38 (8):1059–70. doi:10.1007/s10483-017-2225-7.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology 32 (1):111–20. doi:10.1016/j.ast.2013.12.002.
  • Zghal, S., D. Ataoui, and F. Dammak. 2022. Static bending analysis of beams made of functionally graded porous materials. Mechanics Based Design of Structures and Machines 50 (3):1012–29. doi:10.1080/15397734.2020.1748053.
  • Zhang, X., and Q. Han. 2007. Buckling and postbuckling behaviors of imperfect cylindrical shells subjected to torsion. Thin-Walled Structures 45 (12):1035–43. doi:10.1016/j.tws.2007.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.